【題目】函數(shù)(其中,為自然對數(shù)的底數(shù)).
①,使得直線為函數(shù)的一條切線;
②對,函數(shù)的導(dǎo)函數(shù)無零點;
③對,函數(shù)總存在零點;
則上述結(jié)論正確的是______.(寫出所有正確的結(jié)論的序號)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任利用周末時間對該班級年最后一次月考的語文作文分數(shù)進行統(tǒng)計,發(fā)現(xiàn)分數(shù)都位于之間,現(xiàn)將所有分數(shù)情況分為、、、、、、共七組,其頻率分布直方圖如圖所示,已知.
(1)求頻率分布直方圖中、的值;
(2)求該班級這次月考語文作文分數(shù)的平均數(shù)和中位數(shù).(每組數(shù)據(jù)用該組區(qū)間中點值作為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中,底面ABCD是邊長為2的正方形.
(1)證明:A1C1平面ACD1;
(2)求異面直線CD與AD1所成角的大;
(3)已知三棱錐D1﹣ACD的體積為,求AA1的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)ax﹣lnx(a∈R).
(1)若a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f(x)1,若函數(shù)g(x)在上有兩個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓C的標準方程;
(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設(shè)O為坐標原點,試判斷以OD為直徑的圓與點M的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),。
(Ⅰ)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(Ⅱ)如果對于任意的都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】九章算術(shù)中有一題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬,”馬主曰:“我馬食半!保裼斨,問各出幾何?其意:今有牛、馬、羊吃了別人的禾苗,苗主人要求賠償五斗粟,羊主人說:“我羊所吃的禾苗只有馬的一半”馬主人說:“我馬所吃的禾苗只有牛的一半”打算按此比例償還,問羊的主人應(yīng)賠償______斗粟,在這個問題中牛主人比羊主人多賠償______斗粟.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且數(shù)列滿足.
(1)若數(shù)列是等差數(shù)列,求數(shù)列的通項公式;
(2)若對任意的,都有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究廣大市民對共享單車的使用情況,某公司在我市隨機抽取了100名用戶進行調(diào)查,得到如下數(shù)據(jù):
每周使用次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
認為每周使用超過3次的用戶為“喜歡騎共享單車”.
(1)分別估算男、女“喜歡騎共享單車”的概率;
(2)請完成下面的2×2列聯(lián)表,并判斷能否有95%把握,認為是否“喜歡騎共享單車”與性別有關(guān).
不喜歡騎共享單車 | 喜歡騎共享單車 | 合計 | |
男 | |||
女 | |||
合計 |
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com