【題目】如圖所示的多面體中, 是平行四邊形, 是矩形, , .

(Ⅰ)求證:平面平面

(Ⅱ)若,求與平面所成角的正弦值.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(I)在三角形中,利用余弦定理求得,利用勾股定理可的,利用由平面得到,所以平面,進(jìn)而平面平面.(II)建立以為坐標(biāo)原點(diǎn),以射線 , 分別為軸, 軸, 軸正方向的空間直角坐標(biāo)系,利用的方向向量和平面的法向量代入公式計(jì)算得與平面所成角的正弦值.

試題解析:

解:(Ⅰ)證明:在平行四邊形中, , ,

由余弦定理,得,

從而,故.

可得為直角三角形且,

又由平面, 平面,得.

,所以平面.

平面,得平面平面.

(Ⅱ)由(Ⅰ)可得在中, , ,又由,

設(shè), ,由平面, ,

建立以為坐標(biāo)原點(diǎn),以射線 , 分別為軸, 軸, 軸正方向的空間直角坐標(biāo)系,如圖所示:

, , .

設(shè)平面的法向量為,得

所以

,得

又因?yàn)?/span>,

所以 .

所以直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式:
(1)已知loga <1,則a> ;
(2)函數(shù)y=2x的圖象與函數(shù)y=2x的圖象關(guān)于y軸對(duì)稱;
(3)函數(shù)f(x)=lg(mx2+mx+1)的定義域是R,則m的取值范圍是0≤m<4;
(4)函數(shù)y=ln(﹣x2+x)的遞增區(qū)間為(﹣∞, ]
正確的有 . (把你認(rèn)為正確的序號(hào)全部寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c(a≠0),記f[2](x)=f(f(x)),例:f(x)=x2+1,
則f[2](x)=(f(x))2+1=(x2+1)2+1;
(1)f(x)=x2﹣x,解關(guān)于x的方程f[2](x)=x;
(2)記△=(b﹣1)2﹣4ac,若f[2](x)=x有四個(gè)不相等的實(shí)數(shù)根,求△的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:),[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖所示.

(1)求直方圖中x的值;

(2)求月平均用電量的眾數(shù)和中位數(shù);

(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+1.
(1)判斷函數(shù)f(x)的奇偶性;
(2)用定義法證明函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中, 平面分別為的中點(diǎn), 是邊長(zhǎng)為的正三角形, .

(1)證明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿足f(x)﹣g(x)=ex , 則有(
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a=log36,a=log510,a=log714,則(
A.a>b>c
B.a>c>b
C.c>a>b
D.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為,( 為參數(shù)).

(Ⅰ)求直線的直角坐標(biāo)方程和曲線的普通方程;

(Ⅱ)曲線軸于兩點(diǎn),且點(diǎn), 為直線上的動(dòng)點(diǎn),求周長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案