【題目】某城市100戶居民的月平均用電量(單位:),[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖所示.

(1)求直方圖中x的值;

(2)求月平均用電量的眾數(shù)和中位數(shù);

(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應抽取多少戶?

【答案】(1)0.0075;(2)眾數(shù)是230,中位數(shù)是224;(3)5

【解析】試題分析:

(1)利用頻率分布直方圖小長方形的面積之和為1可得x=0.0075;

(2)結合所給的數(shù)據(jù)可得:月平均用電量的眾數(shù)和中位數(shù)為,224;

(3)結合頻率分布直方圖和分層抽樣的概念可得月平均用電量在[220,240)的用戶中應抽取5戶.

試題解析:

(Ⅰ)由直方圖的性質,可得

(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1

得:x=0.0075,所以直方圖中x的值是0.0075.

(Ⅱ)月平均用電量的眾數(shù)是

因為(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用電量的中位數(shù)在[220,240)內,

設中位數(shù)為a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5,

解得:a=224,

所以月平均用電量的中位數(shù)是224.

(Ⅲ)月平均用電量為[220,240]的用戶有0.0125×20×100=25(戶),月平均用電量為[240,260)的用戶有0.0075×20×100=15(戶),月平均用電量為[260,280)的用戶有:

0.005×20×100=10(戶),

抽取比例,所以月平均用電量在[220,240)的用戶中應抽取(戶).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=AA1= , ∠ABC=60°.
(1)證明:AB⊥A1C;
(2)求二面角A﹣A1C﹣B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校上學期的期中考試后,為了了解某學科的考試成績,根據(jù)學生的考試成績利用分層抽樣抽取名學生的成績進行統(tǒng)計(所有學生成績均不低于分),得到學生成績的頻率分布直方圖如圖,回答下列問題;

(Ⅰ)根據(jù)頻率分布直方圖計算本次考試成績的平均分;

(Ⅱ)已知本次全?荚嚦煽冊內的人數(shù)為,試確定全校的總人數(shù);

(Ⅲ)若本次考試抽查的人中考試成績在內的有名女生,其余為男生,從中選擇兩名學生,求選擇一名男生與一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】運貨卡車以每小時x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/時).假設汽油的價格是每升2元,而汽車每小時耗油升,司機的工資是每小時14元.

(1)求這次行車總費用y關于x的表達式;

(2)當x為何值時,這次行車的總費用最低,并求出最低費用的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , 中點.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點,使得?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某校高三學生的視力情況,隨機地抽查了該校100名高三學生的視力情況,得到頻率分布直方圖如下圖,由于不慎將部分數(shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設最大頻率為a,視力在4.65.0之間的學生數(shù)為b,則a,b的值分別為 (   )

A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的多面體中, 是平行四邊形, 是矩形, , , .

(Ⅰ)求證:平面平面;

(Ⅱ)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點, 求實數(shù)的取值范圍;

() 證明:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)若, ,使得),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案