精英家教網 > 高中數學 > 題目詳情

【題目】月,中國良渚古城遺址獲準列入世界遺產名錄,標志著中華五千年文明史得到國際社會認可.良渚古城遺址是人類早期城市文明的范例,實證了中華五千年文明史.考古科學家在測定遺址年齡的過程中利用了放射性物質因衰變而減少這一規(guī)律.已知樣本中碳的質量隨時間(單位:年)的衰變規(guī)律滿足表示碳原有的質量),則經過年后,碳的質量變?yōu)樵瓉淼?/span>________;經過測定,良渚古城遺址文物樣本中碳的質量是原來的,據此推測良渚古城存在的時期距今約在________年到年之間.(參考數據:

【答案】

【解析】

1)根據衰變規(guī)律,令,代入求得;

2)令,解方程求得即可.

時, 經過年后,碳的質量變?yōu)樵瓉淼?/span>

,則

良渚古城存在的時期距今約在年到年之間

故答案為;

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知在等比數列{an}中,=2,,=128,數列{bn}滿足b1=1,b2=2,且{}為等差數列.

(1)求數列{an}和{bn}的通項公式;

(2)求數列{bn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,

1)求處的切線方程以及的單調性;

2)對,有恒成立,求的最大整數解;

3)令,若有兩個零點分別為,的唯一的極值點,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知是橢圓的左焦點,且橢圓經過點.

)求橢圓的方程;

)若過點的直線交橢圓、兩點,線段的中點為,過且與垂直的直線與軸和軸分別交于、兩點,記、的面積分別為.若,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列,滿足:

1)若,求數列的通項公式;

2)若,且

,求證:數列為等差數列;

若數列中任意一項的值均未在該數列中重復出現無數次,求首項應滿足的條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司即將推車一款新型智能手機,為了更好地對產品進行宣傳,需預估市民購買該款手機是否與年齡有關,現隨機抽取了50名市民進行購買意愿的問卷調查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調查結果用莖葉圖表示如圖所示.

(1)根據莖葉圖中的數據完成列聯(lián)表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?

(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,求這2人都是年齡大于40歲的概率.

附: .

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,設橢圓的左、右焦點分別為F1,F2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且0,若過 A,Q,F2三點的圓恰好與直線相切,過定點 M(0,2)的直線與橢圓C交于G,H兩點(點G在點M,H之間).(Ⅰ)求橢圓C的方程;(Ⅱ)設直線的斜率,在x軸上是否存在點P(,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,請說明理由;(Ⅲ)若實數滿足,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題:“雙曲線任意一點到直線的距離分別記作,則為定值”為真命題.

1)求出的值.

2)已知直線 關于y軸對稱且使得上的任意點到的距離滿足為定值,求的方程.

3)已知直線是與(2)中某一條直線平行(或重合)且與橢圓交于兩點,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為,曲線的參數方程為:為參數),,為直線上距離為的兩動點,點為曲線上的動點且不在直線上.

1)求曲線的普通方程及直線的直角坐標方程.

2)求面積的最大值.

查看答案和解析>>

同步練習冊答案