【題目】已知△ABC中,頂點A(3,7),邊AB上的中線CD所在直線的方程是,邊AC上的高BE所在直線的方程是.
(1)求點A關于直線CD的對稱點的坐標;
(2)求頂點B、C的坐標;
(3)過A作直線,使B,C兩點到的距離相等,求直線的方程.
【答案】(1);(2),;(3)或
【解析】
(1)設點關于直線的對稱點的坐標為,則的中點需在直線:上,且,得到方程組,解得即可;
(2)依題意設所在直線方程為,聯(lián)立與,求得其交點即為,
設則的中點坐標為,則的中點在直線上,且在上,聯(lián)立解得;
(3)分兩種情況討論: 當直線過的中點,顯然滿足、兩點到的距離相等;
當直線平行時,也滿足、兩點到的距離相等;分別計算可得;
解:(1)設點關于直線的對稱點的坐標為,
則,的中點坐標為,
因為:,
所以解得故對稱點的坐標為;
(2)依題意設所在直線方程為,
則解得,故
所以解得故,
設則的中點坐標為,
所以,解得
即
(3)由(2)可得的中點坐標為,當直線過的中點,顯然滿足、兩點到的距離相等,此時直線方程為,即;
當直線平行時,也滿足、兩點到的距離相等,此時直線方程為,即
故滿足條件的直線方程為或
科目:高中數(shù)學 來源: 題型:
【題目】拋物線的圖象關于軸對稱,頂點在坐標原點,點在拋物線上.
(1)求拋物線的標準方程;
(2)設直線的方程為,若直線與拋物線交于兩點,且以為直徑的圓過點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐,底面為正方形,且底面,過的平面與側面的交線為,且滿足(表示的面積).
(1)證明: 平面;
(2)當時,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,且函數(shù)是偶函數(shù).
(1)求的解析式;.
(2)若不等式在上恒成立,求n的取值范圍;
(3)若函數(shù)恰好有三個零點,求k的值及該函數(shù)的零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求曲線在點處的切線的斜率;
(2)討論函數(shù)的單調性;
(3)當函數(shù)有極值時,若對, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,曲線是以原點O為中心、為焦點的橢圓的一部分,曲線是以O為頂點、為焦點的拋物線的一部分,A是曲線和的交點且為鈍角,若,.
(1)求曲線和的方程;
(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問是否為定值?若是求出定值;若不是說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com