【題目】設橢圓的右焦點為過點作與軸垂直的直線交橢圓于,兩點(點在第一象限),過橢圓的左頂點和上頂點的直線與直線交于,且滿足為坐標原點,則該橢圓的離心率為( )

A. B. C. D.

【答案】A

【解析】分析根據(jù)向量共線定理及,,可推出,的值,再根據(jù)過點作與軸垂直的直線交橢圓于,兩點(點在第一象限)可推出兩點的坐標,然后求出過橢圓的左頂點和上頂點的直線的方程即可求得點的坐標從而可得,三者關系,進而可得橢圓的離心率.

詳解:∵、三點共線,

過點作與軸垂直的直線交橢圓于,兩點(點在第一象限)

,

∵過橢圓的左頂點和上頂點的直線與直線交于

直線的方程為為

,即.

,.

故選A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,角A,B,C對邊的邊長分別是a,b,c,且acosB+cosC)=b+c

1)求證:A

2)若△ABC外接圓半徑為1,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓臺的上、下底面半徑分別為,母線長,從圓臺母線的中點拉一條繩子繞圓臺側(cè)面轉(zhuǎn)到在下底面,求:

1繩子的最短長度;

2在繩子最短時,上底圓周上的點到繩子的最短距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),下列關于函數(shù)的單調(diào)性說法正確的是(

A.函數(shù)上不具有單調(diào)性

B.時,上遞減

C.的單調(diào)遞減區(qū)間是,則a的值為

D.在區(qū)間上是減函數(shù),則a的取值范圍是

E.在區(qū)間上不可能是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在吸煙與患肺病是否相關的判斷中,有下面的說法:

1)從獨立性分析可知在犯錯誤的概率不超過0.05的前提下,認為吸煙與患肺病有關系時,是指有的可能性使得推斷錯誤.

2)從獨立性分析可知在犯錯誤的概率不超過0.01的前提下,認為吸煙與患肺病有關系時,若某人吸煙,則他有的可能患有肺。

3)若,則在犯錯誤的概率不超過0.01的前提下,認為吸煙與患肺病有關系,那么在100個吸煙的人中必有99人患有肺;

其中說法正確的是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

(1)現(xiàn)按分層抽樣從質(zhì)量為的芒果中隨機抽取個,再從這個中隨機抽取個,記隨機變量表示質(zhì)量在內(nèi)的芒果個數(shù),求的分布列及數(shù)學期望.

(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,將頻率視為概率,某經(jīng)銷商來收購芒果,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:

A:所以芒果以/千克收購;

B:對質(zhì)量低于克的芒果以/個收購,高于或等于克的以/個收購.

通過計算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),如果存在實數(shù)使得,那么稱的生成函數(shù).

1)函數(shù),是否為的生成函數(shù)?說明理由;

2)設,當時生成函數(shù),求的對稱中心(不必證明);

3)設,,取,,生成函數(shù),若函數(shù)的最小值是5,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法:

①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;

②設有一個線性回歸方程,變量x增加1個單位時,y平均增加5個單位;

③設具有相關關系的兩個變量x,y的相關系數(shù)為r,則|r|越接近于0,x和y之間的線性相關程度越強;

④在一個2×2列聯(lián)表中,由計算得K2的值,則K2的值越大,判斷兩個變量間有關聯(lián)的把握就越大.

以上錯誤結(jié)論的個數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,側(cè)面PAD是正三角形,側(cè)面底面ABCDMPD的中點.

1)求證:平面PCD;

2)求側(cè)面PBC與底面ABCD所成二面角的余弦值.

查看答案和解析>>

同步練習冊答案