【題目】某險種的基本保費為(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人的本年度的保費與其上年度的出險次數(shù)的關(guān)聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | |
保費 |
設(shè)該險種一續(xù)保人一年內(nèi)出險次數(shù)與相應(yīng)概率如下:
一年內(nèi)出險次數(shù) | 0 | 1 | 2 | 3 | 4 | |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅰ)求一續(xù)保人本年度的保費高于基本保費的概率;
(Ⅱ)若一續(xù)保人本年度的保費高于基本保費,求其保費比基本保費高出的概率;
(Ⅲ)求續(xù)保人本年度的平均保費與基本保費的比值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x+2sinxcosx+3cos2x. (Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[0, ],求函數(shù)f(x)的最值及相應(yīng)x的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前項中,奇數(shù)項的和為56,偶數(shù)項的和為48,且(其中).
(1)求數(shù)列的通項公式;
(2)若,,…,,…是一個等比數(shù)列,其中,,求數(shù)列的通項公式;
(3)若存在實數(shù),,使得對任意恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義域為R的偶函數(shù)y=f(x)滿足f(x+2)=﹣f(x),且當x∈[0,2]時,f(x)=2﹣x2 , 則方程f(x)=sin|x|在[﹣3π,3π]內(nèi)根的個數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義“規(guī)范01數(shù)列”如下:共有項,其中項為0,項為1,且對任意,,,…,中0的個數(shù)不少于1的個數(shù).若,則不同的“規(guī)范01數(shù)列”共有( )
A. 14個 B. 13個 C. 15個 D. 12個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列中,公差,其前項和為,且滿足:.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)通過公式構(gòu)造一個新的數(shù)列.若也是等差數(shù)列,求非零常數(shù);
(Ⅲ)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù),關(guān)于x的方程有3個不同的實數(shù)根,則( 。
A. b<﹣2且c>0B. b>﹣2且c<0C. b=﹣2且c=0D. b>﹣2且c=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷錯誤的是
A. 若隨機變量服從正態(tài)分布,則;
B. 若組數(shù)據(jù)的散點都在上,則相關(guān)系數(shù);
C. 若隨機變量服從二項分布: , 則;
D. 是的充分不必要條件;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】保險公司統(tǒng)計的資料表明:居民住宅區(qū)到最近消防站的距離x(單位:千米)和火災(zāi)所造成的損失數(shù)額y(單位:千元)有如下的統(tǒng)計資料:
距消防站距離x(千米) | 1.8 | 2.6 | 3.1 | 4.3 | 5.5 | 6.1 |
火災(zāi)損失費用y(千元) | 17.8 | 19.6 | 27.5 | 31.3 | 36.0 | 43.2 |
如果統(tǒng)計資料表明y與x有線性相關(guān)關(guān)系,試求:
(Ⅰ)求相關(guān)系數(shù)(精確到0.01);
(Ⅱ)求線性回歸方程(精確到0.01);
(III)若發(fā)生火災(zāi)的某居民區(qū)與最近的消防站相距10.0千米,評估一下火災(zāi)的損失(精確到0.01).
參考數(shù)據(jù):,,,
,,
參考公式:相關(guān)系數(shù) ,回歸方程 中斜率和截距的最小二乘估計公式分別為:,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com