【題目】在平面直角坐標(biāo)系中,已知過點的直線與橢圓交于不同的兩點,,其中.

1)若,求的面積;

2)在x軸上是否存在定點T,使得直線TA、TBy軸圍成的三角形始終為等腰三角形.

【答案】(1) (2) x軸上存在定點,使得直線TA、TBy軸圍成的三角形始終為等腰三角形

【解析】

1)當(dāng)時得直線l,與橢圓聯(lián)立得B,再求面積

2)設(shè)直線l ,與橢圓聯(lián)立,由直線TA、TBy軸圍成的三角形始終為等腰三角形,得 ,利用斜率代入韋達(dá)定理化簡得定點坐標(biāo)

1)當(dāng)時,代入橢圓方程可得點坐標(biāo)為

點坐標(biāo)為,此時直線l

聯(lián)立,消x整理可得

解得,故B

所以的面積為

,由對稱性知的面積也是,

綜上可知,當(dāng)時,的面積為.

2)顯然直線l的斜率不為0,設(shè)直線l

聯(lián)立,消去x整理得

,得

,

因為直線TA、TBy軸圍成的三角形始終為等腰三角形,

所以

設(shè),則,

,

解得.

x軸上存在定點,使得直線TATBy軸圍成的三角形始終為等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果存在常數(shù)a,使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項,則a-x也是數(shù)列{an}中的一項,稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.

1)若數(shù)列:2,3,6mm6)是“兌換系數(shù)”為a的“兌換數(shù)列”,求ma的值;

2)已知有窮等差數(shù)列{bn}的項數(shù)是n0n0≥3),所有項之和是B,求證:數(shù)列{bn}是“兌換數(shù)列”,并用n0B表示它的“兌換系數(shù)”;

3)對于一個不少于3項,且各項皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知從2開始的連續(xù)偶數(shù)蛇形排列形成寶塔形數(shù)表,第一行為2,第一行為46,第三行為1210,8,第四行為1416,1820.如圖所示,在寶塔形數(shù)表中位于第i行,第j列的數(shù)記為,比如,,,若,則

A.65B.70C.71D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,平面平面,,點分別是棱,的中點,點的重心.

1)證明:平面;

2)若與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】惠州市某商店銷售某海鮮,經(jīng)理統(tǒng)計了春節(jié)前后50天該海鮮的日需求量,單位:公斤),其頻率分布直方圖如下圖所示.該海鮮每天進(jìn)貨1次,每銷售1公斤可獲利40元;若供大于求,剩余的海鮮削價處理,削價處理的海鮮每公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,調(diào)撥的海鮮銷售1公斤可獲利30.假設(shè)商店該海鮮每天的進(jìn)貨量為14公斤,商店銷售該海鮮的日利潤為.

1)求商店日利潤關(guān)于日需求量的函數(shù)表達(dá)式.

2)根據(jù)頻率分布直方圖,

①估計這50天此商店該海鮮日需求量的平均數(shù).

②假設(shè)用事件發(fā)生的頻率估計概率,請估計日利潤不少于620元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國,緊跟黨走”為主題的黨史知識競賽。從參加競賽的學(xué)生中,隨機(jī)抽取40名學(xué)生,將其成績分為六段,,,,,,到如圖所示的頻率分布直方圖.

1)求圖中的值及樣本的中位數(shù)與眾數(shù);

2)若從競賽成績在兩個分?jǐn)?shù)段的學(xué)生中隨機(jī)選取兩名學(xué)生,設(shè)這兩名學(xué)生的競賽成績之差的絕對值不大于分為事件,求事件發(fā)生的概率.

3)為了激勵同學(xué)們的學(xué)習(xí)熱情,現(xiàn)評出一二三等獎,得分在內(nèi)的為一等獎,得分在內(nèi)的為二等獎, 得分在內(nèi)的為三等獎.若將頻率視為概率,現(xiàn)從考生中隨機(jī)抽取三名,設(shè)為獲得三等獎的人數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且.

1)求a

2)設(shè)函數(shù)的導(dǎo)函數(shù)為,在函數(shù)的圖像上取定兩點,記直線AB的斜率為k,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動新能源汽車產(chǎn)業(yè)的迅速發(fā)展,下表是近幾年我國某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計表:

年份

2014

2015

2016

2017

2018

銷量(萬臺)

8

10

13

25

24

某機(jī)構(gòu)調(diào)查了該地區(qū)30位購車車主的性別與購車種類情況,得到的部分?jǐn)?shù)據(jù)如下表所示:

購置傳統(tǒng)燃油車

購置新能源車

總計

男性車主

6

24

女性車主

2

總計

30

1)求新能源乘用車的銷量關(guān)于年份的線性相關(guān)系數(shù),并判斷是否線性相關(guān);

2)請將上述列聯(lián)表補充完整,并判斷是否有的把握認(rèn)為購車車主是否購置新能源乘用車與性別有關(guān);

參考公式:,,其中.,若,則可判斷線性相關(guān).

附表:

010

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱AB與底面垂直,燈桿BC與燈柱AB所在的平面與道路走向垂直,路燈C采用錐形燈罩,射出的管線與平面ABC部分截面如圖中陰影所示,路寬AD=24米,設(shè)

(1)求燈柱AB的高h(用表示);

(2)此公司應(yīng)該如何設(shè)置的值才能使制作路燈燈柱AB和燈桿BC所用材料的總長度最小?最小值為多少?

查看答案和解析>>

同步練習(xí)冊答案