【題目】仙游某家具城生產(chǎn)某種家具每件成本為3萬元,每件售價(jià)為x萬元(x>3),月銷量為t件,經(jīng)驗(yàn)表明,t= +10(x﹣6)2 , 其中3<x<6,a為常數(shù).已知銷售價(jià)格為5萬元時(shí),月銷量為11件.
(1)求a的值;
(2)求售價(jià)定為多少時(shí),該家具的月利潤最大,最大值為多少?
【答案】
(1)解:因?yàn)閤=5時(shí),y=11,所以 +10=11,a=2.
(2)解:由(1)可知,該商品每日的銷售量y= +10(x﹣6)2.
所以該家具的月利潤為:
f(x)=(x﹣3)[ +10(x﹣6)2]=2+10(x﹣3)(x﹣6)2,3<x<6.
從而,f′(x)=10[(x﹣6)2+2(x﹣3)(x﹣6)]=30(x﹣4)(x﹣6).
于是,當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x | (3,4) | 4 | (4,6) |
f′(x) | + | 0 | ﹣ |
f(x) | 單調(diào)遞增 | 極大值42 | 單調(diào)遞減 |
由上表可得,x=4是函數(shù)f(x)在區(qū)間(3,6)內(nèi)的極大值點(diǎn),也是最大值點(diǎn).
所以,當(dāng)x=4時(shí),函數(shù)f(x)取得最大值,且最大值等于42.
答:當(dāng)銷售價(jià)格為4萬元時(shí),該家具的月利潤最大,最大值等于42萬元
【解析】(1)將x,y的值代入方程,求出a的值即可;(2)求出函數(shù)表達(dá)式,根據(jù)函數(shù)的單調(diào)性,求出函數(shù)的極大值和極小值,從而求出函數(shù)的最大值,得到答案即可.
【考點(diǎn)精析】本題主要考查了函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x+1)定義域是[﹣2,3],則y=f(2x﹣5)的定義域( )
A.
B.
C.[﹣11,﹣1]
D.[﹣3,7]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P是圓x2+y2=36的圓心,R是橢圓 上的一動(dòng)點(diǎn),且滿足 .
(1)求動(dòng)點(diǎn)Q的軌跡方程
(2)若直線y=x+1與曲線Q相交于A、B兩點(diǎn),求弦AB的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠生產(chǎn)某種產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸時(shí),每年的生產(chǎn)成本y萬元與年產(chǎn)量x噸之間的關(guān)系可可近似地表示為y= ﹣30x+4000.
(1)若每年的生產(chǎn)總成本不超過2000萬元,求年產(chǎn)量x的取值范圍;
(2)求年產(chǎn)量為多少噸時(shí),每噸的平均成本最低,并求每噸的最低成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校為進(jìn)行“陽光運(yùn)動(dòng)一小時(shí)”活動(dòng),計(jì)劃在一塊直角三角形ABC的空地上修建一個(gè)占地面積為S(平方米)的矩形AMPN健身場地.如圖,點(diǎn)M在AC上,點(diǎn)N在AB上,且P點(diǎn)在斜邊BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].設(shè)矩形AMPN健身場地每平方米的造價(jià)為 元,再把矩形AMPN以外(陰影部分)鋪上草坪,每平方米的造價(jià)為 元(k為正常數(shù)).
(1)試用x表示S,并求S的取值范圍;
(2)求總造價(jià)T關(guān)于面積S的函數(shù)T=f(S);
(3)如何選取|AM|,使總造價(jià)T最低(不要求求出最低造價(jià)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).
(1)證明:D1E⊥A1D;
(2)當(dāng)E為AB的中點(diǎn)時(shí),求點(diǎn)E到面ACD1的距離;
(3)AE等于何值時(shí),二面角D1﹣EC﹣D的大小為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=ax2+3a是定義在[a2﹣5,a﹣1]上的偶函數(shù),令函數(shù)g(x)=f(x)+f(1﹣x),則函數(shù)g(x)的定義域?yàn)?/span> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={1,2,3},B={x|x2﹣(a+1)x+a=0,x∈R},若A∪B=A,求實(shí)數(shù)a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某加工廠用某原料由車間加工出A產(chǎn)品,由乙車間加工出B產(chǎn)品.甲車間加工一箱原料需耗費(fèi)工時(shí)10小時(shí)可加工出7千克A產(chǎn)品,每千克A產(chǎn)品獲利40元.乙車間加工一箱原料需耗費(fèi)工時(shí)6小時(shí)可加工出4千克B產(chǎn)品,每千克B產(chǎn)品獲利50元.甲、乙兩車間每天功能完成至多70多箱原料的加工,每天甲、乙車間耗費(fèi)工時(shí)總和不得超過480小時(shí),甲、乙兩車間每天獲利最大的生產(chǎn)計(jì)劃為( )
A.甲車間加工原料10箱,乙車間加工原料60箱
B.甲車間加工原料15箱,乙車間加工原料55箱
C.甲車間加工原料18箱,乙車間加工原料50箱
D.甲車間加工原料40箱,乙車間加工原料30箱
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com