【題目】已知函數(shù)y=f(x+1)定義域是[﹣2,3],則y=f(2x﹣5)的定義域( )
A.
B.
C.[﹣11,﹣1]
D.[﹣3,7]

【答案】B
【解析】解:∵y=f(x+1)定義域是[﹣2,3],

∴﹣1≤x+1≤4,

∴f(x)的定義域是[﹣1,4],

令﹣1≤2x﹣5≤4,

解得2≤x≤

所以答案是:B.

【考點(diǎn)精析】掌握函數(shù)的定義域及其求法是解答本題的根本,需要知道求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列各組函數(shù)是否為相等函數(shù):
⑴f(x)=f(x)= ,g(x)=x﹣5;
⑵f(x)=2x+1(x∈Z),g(x)=2x+1(x∈R);
⑶f(x)=|x+1|,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x2﹣2tx+2,g(x)=ex﹣1+e﹣x+1 , 且函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱.
(1)求函數(shù)f(x)在區(qū)間[0,4]上最大值;
(2)設(shè) ,不等式h(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)F(x)=f(x)+ag(x)﹣2有唯一零點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)= + 的定義域?yàn)椋?)
A.[﹣1,2)∪(2,+∞)
B.[﹣1,+∞)
C.(﹣∞,2)∪(2,+∞)
D.(﹣1,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y關(guān)于t的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為: = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)=x2(x﹣a).
(1)若函數(shù)f(x)在區(qū)間 內(nèi)是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值h(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex+ax﹣1(e為自然對(duì)數(shù)的底數(shù)). (Ⅰ)當(dāng)a=1時(shí),求過(guò)點(diǎn)(1,f(1))處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若f(x)≥x2在(0,1)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|(x﹣2m+1)(x﹣m+2)<0},B={x|1≤x+1≤4}.
(1)若m=1,求A∩B;
(2)若A∩B=A,求實(shí)數(shù)m的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】仙游某家具城生產(chǎn)某種家具每件成本為3萬(wàn)元,每件售價(jià)為x萬(wàn)元(x>3),月銷量為t件,經(jīng)驗(yàn)表明,t= +10(x﹣6)2 , 其中3<x<6,a為常數(shù).已知銷售價(jià)格為5萬(wàn)元時(shí),月銷量為11件.
(1)求a的值;
(2)求售價(jià)定為多少時(shí),該家具的月利潤(rùn)最大,最大值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案