【題目】已知函數(shù).

(1)若時取到極值,求的值及的圖象在處的切線方程;

(2)若時恒成立,求的取值范圍.

【答案】(1) (2) .

【解析】試題分析:1求導(dǎo),由時取到極值,可求得的值,再根據(jù)導(dǎo)數(shù)的幾何意義,即可求出切線方程;(2)由定義域可得,再對進行分類討論,分別求出不同情況時的單調(diào)性及最小值,即可求出的取值范圍.

試題解析:(1) ,

時取到極值,,解得

故在處的切線方程為:

(2)由定義域知: 對于恒成立,可得

①當,, 恒成立,所以此時遞減

注意到,故此時不恒成立

②當,在區(qū)間, 恒成立,所以此時遞增

,故此時恒成立

③當, 的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為

處取得最小值,只需恒成立

設(shè)

設(shè),

, 遞減,

所以,解得

綜上可知,恒成立,只需的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤.

(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)R.

(1)當時,求函數(shù)的最小值;

(2)若對任意,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R的函數(shù)是偶函數(shù),且滿足上的解析式為,過點作斜率為k的直線l,若直線l與函數(shù)的圖象至少有4個公共點,則實數(shù)k的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國“霧霾天氣”頻發(fā),嚴重影響人們的身體健康.根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級如下表:

API

0~50

51~100

101~150

151~200

201~250

251~300

>300

級別

1

2

1

2

狀況

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

對某城市一年(365天)的空氣質(zhì)量進行監(jiān)測,獲得的API數(shù)據(jù)按照區(qū)間[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]進行分組,得到頻率分布直方圖如圖.

(1)求頻率分布直方圖中x的值;

(2)計算一年中空氣質(zhì)量分別為良和輕微污染的天數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1時,若函數(shù)恰有一個零點,求實數(shù)的取值范圍;

2, 時,對任意,有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修45:不等式選講

已知函數(shù)

1)當時,求不等式的解集;

2)若函數(shù)的值域為,,的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校高一年級開設(shè)、、、、五門選修課,每位同學(xué)須彼此獨立地選三課程,其中甲同學(xué)必選課程,不選課程,另從其余課程中隨機任選兩門課程.乙、丙兩名同學(xué)從五門課程中隨機任選三門課程.

Ⅰ)求甲同學(xué)選中課程且乙同學(xué)未選中課程的概率.

Ⅱ)用表示甲、乙、丙選中課程的人數(shù)之和,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的長軸長是短軸長的2倍,且過點

⑴求橢圓的方程

⑵若在橢圓上有相異的兩點三點不共線),為坐標原點,且直線,直線,直線的斜率滿足.

(。┣笞C: 是定值;

(ⅱ)設(shè)的面積為,取得最大值時求直線的方程

查看答案和解析>>

同步練習(xí)冊答案