【題目】某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè).右圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是( ).

A. 90B. 75C. 60D. 45

【答案】A

【解析】

樣本中產(chǎn)品凈重小于100克的頻率為(0.0500.100)×20.3,頻數(shù)為36,

樣本總數(shù)為.

樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的頻率為(0.1000.1500.125)×20.75

樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)為120×0.7590.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)某校夏令營(yíng)有3名男同學(xué)AB、C3名女同學(xué)X、YZ,其年級(jí)情況如下表:

一年級(jí)

二年級(jí)

三年級(jí)

男同學(xué)

A

B

C

女同學(xué)

X

Y

Z

現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競(jìng)賽(每人被選到的可能性相同)

①用表中字母列舉出所有可能的結(jié)果;

②設(shè)M為事件選出的2人來(lái)自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué),求事件M發(fā)生的概率.

2)節(jié)日前夕,小李在家門前的樹(shù)上掛了兩串彩燈.這兩串彩燈的第一次閃亮相互獨(dú)立,且都在通電后的4秒內(nèi)任一時(shí)刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮.那么這兩串彩燈同時(shí)通電后,它們第一次閃亮的時(shí)刻相差不超過(guò)2秒的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在邊長(zhǎng)為2的菱形中,,將沿對(duì)角線折起到的位置,使平面平面,的中點(diǎn),平面,且,如圖2.

1)求證:平面

2)求平面與平面所成角的余弦值;

3)在線段上是否存在一點(diǎn),使得平面?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題(1條斜線段長(zhǎng)相等,則他們?cè)谄矫鎯?nèi)的射影長(zhǎng)也相等;(2)直線不在平面內(nèi),他們?cè)谄矫?/span>內(nèi)的射影是兩條平行直線,則;(3)與同一平面所成的角相等的兩條直線平行;(4)一條直線與一個(gè)平面所成的角是,那么它與平面內(nèi)任何其他直線所成的角都不小于;其中正確的命題序號(hào)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓錐的側(cè)面展開(kāi)圖是一個(gè)半圓.

1)求圓錐的母線與底面所成的角;

2)過(guò)底面中心且平行于母線的截平面,若截面與圓錐側(cè)面的交線是焦參數(shù)(焦點(diǎn)到準(zhǔn)線的距離)為的拋物線,求圓錐的全面積;

3)過(guò)底面點(diǎn)作垂直且于母線的截面,若截面與圓錐側(cè)面的交線是長(zhǎng)軸為的橢圓,求橢圓的面積(橢圓號(hào)的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)創(chuàng)業(yè)青年租用一塊邊長(zhǎng)為4百米的等邊田地如圖養(yǎng)蜂、產(chǎn)蜜與售蜜,田地內(nèi)擬修建筆直小路MN,AP,其中MN分別為AC,BC的中點(diǎn),點(diǎn)PCN上,規(guī)劃在小路MNAP的交點(diǎn)O(OMN不重合處設(shè)立售蜜點(diǎn),圖中陰影部分為蜂巢區(qū),空白部分為蜂源植物生長(zhǎng)區(qū),A,N為出入口小路的寬度不計(jì)為節(jié)約資金,小路MO段與OP段建便道,供蜂源植物培育之用,費(fèi)用忽略不計(jì)為車輛安全出入,小路AO段的建造費(fèi)用為每百米5萬(wàn)元,小路ON段的建造費(fèi)用為每百米4萬(wàn)元.

(Ⅰ)若擬修的小路AO段長(zhǎng)為百米,求小路ON段的建造費(fèi)用;

(Ⅱ)設(shè), 的值,使得小路AO段與ON段的建造總費(fèi)用最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市交通部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

3)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為,左頂點(diǎn)為A,右頂點(diǎn)B在直線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)點(diǎn)P是橢圓C上異于A,B的點(diǎn),直線交直線于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的方程為:,為圓上任意一點(diǎn),過(guò)軸的垂線,垂足為,點(diǎn)上,且.

(1)求點(diǎn)的軌跡的方程;

(2)過(guò)點(diǎn)的直線與曲線交于、兩點(diǎn),點(diǎn)的坐標(biāo)為的面積為,求的最大值,及直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案