【題目】已知函數(shù),.
(1)若不等式對恒成立,求的最小值;
(2)證明:.
(3)設(shè)方程的實根為.令若存在,,,使得,證明:.
【答案】(1)(2)證明見解析(3)證明見解析
【解析】
(1)由題意可得,,令,利用導(dǎo)數(shù)得在上單調(diào)遞減,進而可得結(jié)論;
(2)不等式轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)得單調(diào)性即可得到答案;
(3)由題意可得,進而可將不等式轉(zhuǎn)化為,再利用單調(diào)性可得,記,,再利用導(dǎo)數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可得到結(jié)論.
(1),即,化簡可得.
令,,因為,所以,.
所以,在上單調(diào)遞減,.
所以的最小值為.
(2)要證,即.
兩邊同除以可得.
設(shè),則.
在上,,所以在上單調(diào)遞減.
在上,,所以在上單調(diào)遞增,所以.
設(shè),因為在上是減函數(shù),所以.
所以,即.
(3)證明:方程在區(qū)間上的實根為,即,要證
,由可知,即要證.
當時,,,因而在上單調(diào)遞增.
當時,,,因而在上單調(diào)遞減.
因為,所以,要證.
即要證.
記,.
因為,所以,則.
.
設(shè),,當時,.
時,,故.
且,故,因為,所以.
因此,即在上單調(diào)遞增.
所以,即.
故得證.
科目:高中數(shù)學 來源: 題型:
【題目】某醫(yī)院體檢中心為回饋大眾,推出優(yōu)惠活動:對首次參加體檢的人員,按200元次收費,并注冊成為會員,對會員的后續(xù)體檢給予相應(yīng)優(yōu)惠,標準如下:
體檢次序 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次及以上 |
收費比例 | 1 | 0.95 | 0.90 | 0.85 | 0.8 |
該體檢中心從所有會員中隨機選取了100位對他們在本中心參加體檢的次數(shù)進行統(tǒng)計,得到數(shù)據(jù)如下表:
體檢次數(shù) | 一次 | 兩次 | 三次 | 四次 | 五次及以上 |
頻數(shù) | 60 | 20 | 10 | 5 | 5 |
假設(shè)該體檢中心為顧客體檢一次的成本費用為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)該體檢中心要從這100人里至少體檢3次的會員中,按體檢次數(shù)用分層抽樣的方法抽出8人,再從這8人中抽出2人發(fā)放紀念品,求抽出的2人中恰有1人體檢3次的概率;
(2)若以這100位會員體檢次數(shù)的頻率分布估計該體檢中心所有會員體檢次數(shù)的概率分布,已知該中心本周共接待了1000名顧客參加體檢,試估計該體檢中心本周所獲利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是邊長為2的正方形,,為的中點,點在上,平面,在的延長線上,且.
(1)證明:平面.
(2)過點作的平行線,與直線相交于點,點為的中點,求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知長方形中,,,現(xiàn)將長方形沿對角線折起,使,得到一個四面體,如圖所示.
(1)試問:在折疊的過程中,異面直線與能否垂直?若能垂直,求出相應(yīng)的的值;若不垂直,請說明理由;
(2)當四面體體積最大時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)記表示中的最小值,設(shè),若函數(shù)至少有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)三棱錐的每個頂點都在球的球面上,是面積為的等邊三角形,,,且平面平面.
(1)確定的位置(需要說明理由),并證明:平面平面.
(2)與側(cè)面平行的平面與棱,,分別交于,,,求四面體的體積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com