【題目】《漢字聽(tīng)寫(xiě)大會(huì)》不斷創(chuàng)收視新高,為了避免“書(shū)寫(xiě)危機(jī)”弘揚(yáng)傳統(tǒng)文化,某市對(duì)全市一定年齡的市民進(jìn)行了漢字聽(tīng)寫(xiě)測(cè)試.為了調(diào)查被測(cè)試市民的基本情況,組織方從參加測(cè)試的市民中隨機(jī)抽取120名市民,按他們的年齡分組:第一組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪(fǎng),求被采訪(fǎng)人恰好在第1組或第4組的概率;
(2)已知第1組市民中男性有3名,組織方要從第1組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性群眾的概率.
【答案】(1)0.25;(2)
【解析】
(1)設(shè)第1組的頻率為,利用概率和為1,求出第1組的概率,把第4組加起來(lái)即可,
(2)設(shè)第1組的頻數(shù),求出,記第1組中的3名男性市民分別為,,,3名女性市民分別為,,,列出隨機(jī)抽取2名市民的基本事件,列出至少有1名女性的基本事件,然后求解至少有兩名女性的概率.
解:(1)設(shè)第1組的頻率為,則由題意可知,,
被采訪(fǎng)人恰好在第1組或第4組的頻率為,
∴估計(jì)被采訪(fǎng)人恰好在第1組或第4組的概率為0.25.
(2)第1組的人數(shù)為,∴第1組中共有6名市民,其中女性市民共3名,
記第1組中的3名男性市民分別為,,,3名女性市民分別為,,,
從第1組中隨機(jī)抽取2名市民組成宣傳隊(duì),共有15個(gè)基本事件,列舉如下:,,,,,,,,,,,,,,,
至少有1名女性,,,,,,,,,,,,共12個(gè)基本事件,
∴從第1組中隨機(jī)抽取2名市民組成宣傳隊(duì),至少有1名女性的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(Ⅰ)若,證明函數(shù)有唯一的極小值點(diǎn);
(Ⅱ)設(shè)且,記函數(shù)的最大值為M,求使得的a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,若點(diǎn)A為函數(shù)上的任意一點(diǎn),點(diǎn)B為函數(shù)上的任意一點(diǎn).
(1)求A,B兩點(diǎn)之間距離的最小值;
(2)若A,B為函數(shù)與函數(shù)公切線(xiàn)的兩個(gè)切點(diǎn),求證:這樣的點(diǎn)B有且僅有兩個(gè),且滿(mǎn)足條件的兩個(gè)點(diǎn)B的橫坐標(biāo)互為倒數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是
A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]
在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)若射線(xiàn) 與曲線(xiàn)交于,兩點(diǎn),與曲線(xiàn)交于,兩點(diǎn),求取最大值時(shí)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,正方形與梯形所在的平面互相垂直,, ,,.
(1)求證:平面;
(2)求證:平面平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明:對(duì)任意的,存在唯一的,使;
(3)設(shè)(2)中所確定的關(guān)于的函數(shù)為,證明:當(dāng)時(shí),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐的底面為直角梯形,,,是以為底邊的等腰直角三角形.
(1)求證:;
(2)若為的垂心,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com