【題目】已知曲線的極坐標(biāo)方程為,以極點為原點,極軸所在直線為軸建立直角坐標(biāo)系.過點作傾斜角為的直線交曲線,兩點.

1)求曲線的直角坐標(biāo)方程,并寫出直線的參數(shù)方程;

2)過點的另一條直線關(guān)于直線對稱,且與曲線交于,兩點,求證:.

【答案】1,為參數(shù))(2)見解析

【解析】

1)根據(jù)轉(zhuǎn)化公式直接轉(zhuǎn)化,并且根據(jù)公式直接寫成直線的參數(shù)方程;

2)直線的參數(shù)方程代入(1)的曲線方程;利用的幾何意義表示

再根據(jù)對稱求的參數(shù)方程,同理可得,再證明結(jié)論.

1)由,∴為曲線的直角坐標(biāo)方程,

作傾斜角為的直線的參數(shù)方程為為參數(shù)).

2)將直線的參數(shù)方程代入的直角坐標(biāo)方程得:

,顯然,設(shè)兩點對應(yīng)的參數(shù)分別為,,

,∴,

由于直線關(guān)于對稱,可設(shè)直線的參數(shù)方程為為參數(shù))與曲線的直角坐標(biāo)方程聯(lián)立同理可得:

,故得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角、、所對的邊分別為、、,.

1)若,求的值;

2)若,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象向右平移個單位長度得到的圖象,若的對稱中心為坐標(biāo)原點,則關(guān)于函數(shù)有下述四個結(jié)論:

的最小正周期為 ②若的最大值為2,則

有兩個零點 在區(qū)間上單調(diào)

其中所有正確結(jié)論的標(biāo)號是(

A.①③④B.①②④C.②④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為奇函數(shù),a為常數(shù).

1)求a的值;

2)判斷函數(shù)時單調(diào)性并證明;

3)若對于區(qū)間上的每一個x的值,不等式恒成立,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用一個半徑為12厘米圓心角為的扇形紙片PAD卷成一個側(cè)面積最大的無底圓錐(接口不用考慮損失),放于水平面上.

1)無底圓錐被一陣風(fēng)吹倒后(如圖1),求它的最高點到水平面的距離;

2)扇形紙片PAD上(如圖2),C是弧AD的中點,B是弧AC的中點,卷成無底圓錐后,求異面直線PABC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.,.

1)求證:;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)當(dāng)時,解不等式

2)若關(guān)于的方程的解集中恰好有一個元素,求實數(shù)的值;

3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新能源汽車是我國汽車工業(yè)由大變強(qiáng)的一條必經(jīng)之路!國家對其給予政策上的扶持,己成為我國的戰(zhàn)略方針.近年來,我國新能源汽車制造蓬勃發(fā)展,某著名車企自主創(chuàng)新,研發(fā)了一款新能源汽車,經(jīng)過大數(shù)據(jù)分析獲得:在某種路面上,該品牌汽車的剎車距離(米)與其車速(千米/小時)滿足下列關(guān)系:,是常數(shù)).(行駛中的新能源汽車在剎車時由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離).如圖是根據(jù)多次對該新能源汽車的實驗數(shù)據(jù)繪制的剎車距離(米)與該車的車速(千米/小時)的關(guān)系圖.該新能源汽車銷售公司為滿足市場需求,國慶期間在甲、乙兩地同時展銷該品牌的新能源汽車,在甲地的銷售利潤(單位:萬元)為,在乙地的銷售利潤(單位:萬元)為,其中為銷售量(單位:輛).

(1)若該公司在兩地共銷售20輛該品牌的新能源汽車,則能獲得的最大利潤是多少?

(2)如果要求剎車距離不超過25.2米,求該品牌新能源汽車行駛的最大速度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有10個不同的產(chǎn)品,其中4個次品,6個正品.現(xiàn)每次取其中一個進(jìn)行測試,直到4個次品全測完為止,若最后一個次品恰好在第五次測試時被發(fā)現(xiàn),則該情況出現(xiàn)的概率是_______.

查看答案和解析>>

同步練習(xí)冊答案