設圓過點P(0,2), 且在軸上截得的弦RG的長為4.
(1)求圓心的軌跡E的方程;                                                                                                        
(2)過點(0,1),作軌跡的兩條互相垂直的弦,設、 的中點分別為,試判斷直線是否過定點?并說明理由.
(1)   (2)直線恒過定點
(1)設圓心的坐標為,如圖過圓心軸于H,
HRG的中點,在中,…3分
 ∴  
  …………………6分

(2)設,
直線AB的方程為)則-----①---②
由①-②得,∴,………………9分
∵點在直線上,∴
∴點M的坐標為.………………10分
同理可得:, ,
∴點的坐標為.………………11分
直線的斜率為,其方程為
,整理得,………………13分
顯然,不論為何值,點均滿足方程,
∴直線恒過定點.……………………14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
拋物線D以雙曲線的焦點為焦點.
(1)求拋物線D的標準方程;
(2)過直線上的動點P作拋物線D的兩條切線,切點為A,B.求證:直線AB過定點Q,并求出Q的坐標;
(3)在(2)的條件下,若直線PQ交拋物線DM,N兩點,求證:|PM|·|QN|=|QM|·|PN|

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分4分,第3小題滿分8分。
已知雙曲線C的中心是原點,右焦點為F,一條漸近線m:,設過點A的直線l的方向向量。
(1)求雙曲線C的方程;
(2)若過原點的直線,且al的距離為,求K的值;
(3)證明:當時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓C:的左焦點為F,上頂點為A,過點A作垂直于AF的直線交橢圓C于另外一點P,交x軸正半軸于點Q,且
(1)求橢圓C的離心率;
(2)若過A、Q、F三點的圓恰好與直線l相切,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線G的中心在原點,它的漸近線與圓相切,過點P(-4,0)作斜率為的直線l,使得lG交于A、B兩點,和y軸交于點C,并且點P在線段AB上,又滿足
(1)求雙曲線G的漸近線方程
(2)求雙曲線G的方程
(3)橢圓S的中心在原點,它的短軸是G的實軸,如果S中垂直于l的平行弦的中點軌跡恰好是G的漸近線截在S內的部分,求橢圓S的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動點P到直線的距離比它到點F的距離大.
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)若點P的軌跡上不存在兩點關于直線l對稱,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若圓x2+y2=9上每個點的橫坐標不變,縱坐標縮短為原來的,則所得曲線的方程是(    )
A.+="1" B.+=1
C.+y2="1"D.+=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

與直線x= -2相切,且經過點(2,0)的動圓圓心C的軌跡方程是_____.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設直線l:2x+y+2=0關于原點對稱的直線為l′.若l′與橢圓x2+=1的交點為AB,點P為橢圓上的動點,則使△PAB的面積為的點P的個數(shù)為( 。
A.1B.2     C.3     D.4

查看答案和解析>>

同步練習冊答案