【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,函數(shù)在區(qū)間上恰有兩個零點(diǎn),求的取值范圍.

【答案】(1)詳見解析;(2).

【解析】

1)求出,對的正負(fù)分類討論即可。

2)利用(1)中的結(jié)論即可判斷上單調(diào)遞減,在上單調(diào)遞增,對與區(qū)間的關(guān)系分類討論即可判斷的單調(diào)性,從而根據(jù)零點(diǎn)個數(shù)列不等式組即可求解。

解:(1)的定義域為,

.

時,,所以上單調(diào)遞增;

時,由.

上單調(diào)遞減,在上單調(diào)遞增.

綜上:當(dāng)時,上單調(diào)遞減;

當(dāng)時,上單調(diào)遞減,在上單調(diào)遞增.

(2)當(dāng)時,由(1)知上單調(diào)遞減,在上單調(diào)遞增,

①若,即時,上單調(diào)遞增,

,在區(qū)間上無零點(diǎn).

②若,即時,上單調(diào)遞減,在上單調(diào)遞增,

.

在區(qū)間上恰有兩個零點(diǎn),

,∴.

③若,即時,上單調(diào)遞減,

,在區(qū)間上有一個零點(diǎn).

綜上,在區(qū)間上恰有兩個零點(diǎn)時的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】珠算之父程大位是我國明代著名的數(shù)學(xué)家,他的應(yīng)用巨著《算法統(tǒng)綜》中有一首竹筒容米問題:家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)四升五,上梢四節(jié)三升八,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識求得中間兩節(jié)竹的容積為

A. 2.2B. 2.3

C. 2.4D. 2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線和曲線的極坐標(biāo)方程;

(2)已知射線),將射線順時針方向旋轉(zhuǎn)得到,且射線與曲線交于兩點(diǎn),射線與曲線交于兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(x+)+sin(x﹣)+cosx.

Ⅰ)求f(x)的最小正周期;

Ⅱ)在△ABC中,f(A)=,△ABC的面積為,AB=,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)利用“五點(diǎn)法”畫出函數(shù)在長度為一個周期的閉區(qū)間的簡圖.

列表:

x

y

作圖:

(2)并說明該函數(shù)圖象可由的圖象經(jīng)過怎么變換得到的.

(3)求函數(shù)圖象的對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),圓的極坐標(biāo)方程為.

(1)寫出直線的方程和圓的直角坐標(biāo)方程;

(2)若點(diǎn)為圓上一動點(diǎn),求點(diǎn)到直線的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某臍橙種植基地記錄了10棵臍橙樹在未使用新技術(shù)的年產(chǎn)量(單位:)和使用了新技術(shù)后的年產(chǎn)量的數(shù)據(jù)變化,得到表格如下:

未使用新技術(shù)的10棵臍橙樹的年產(chǎn)量

第一棵

第二棵

第三棵

第四棵

第五棵

第六棵

第七棵

第八棵

第九棵

第十棵

年產(chǎn)量

30

32

30

40

40

35

36

45

42

30

使用了新技術(shù)后的10棵臍橙樹的年產(chǎn)量

第一棵

第二棵

第三棵

第四棵

第五棵

第六棵

第七棵

第八棵

第九棵

第十棵

年產(chǎn)量

40

40

35

50

55

45

42

50

51

42

已知該基地共有20畝地,每畝地有50棵臍橙樹.

(1)估計該基地使用了新技術(shù)后,平均1棵臍橙樹的產(chǎn)量;

(2)估計該基地使用了新技術(shù)后,臍橙年總產(chǎn)量比未使用新技術(shù)將增產(chǎn)多少?

(3)由于受市場影響,導(dǎo)致使用新技術(shù)后臍橙的售價由原來(未使用新技術(shù)時)的每千克10元降為每千克9元,試估計該基地使用新技術(shù)后臍橙年總收入比原來增加的百分?jǐn)?shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線,的直角坐標(biāo)方程;

(2)判斷曲線是否相交,若相交,請求出交點(diǎn)間的距離;若不相交,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求滿足如下條件的最小正整數(shù):在的圓周上任取個點(diǎn),則在中,至少有2007個不超過.

查看答案和解析>>

同步練習(xí)冊答案