【題目】在下列函數(shù)中,最小值為2的是(
A.y=2x+2x
B.y=sinx+ (0<x<
C.y=x+
D.y=log3x+ (1<x<3)

【答案】A
【解析】解:根據(jù)題意,依次分析選項: 對于A、y=2x+2x=2x+ ,而2x>0,則有y≥2,符合題意,
對于B、y=sinx+ ,令t=sinx,0<x< ,則0<t<1,
有y>2,y=sinx+ 沒有最小值,不符合題意;
對于C、y=x+ ,有x≠0,則有y≥2或y≤﹣2,不符合題意;
對于D、y=log3x+ ,令t=log3x,1<x<3,則有0<t<1,
有y>2,y=log3x+ 沒有最小值,不符合題意;
故選:A.
【考點精析】通過靈活運用基本不等式,掌握基本不等式:,(當且僅當時取到等號);變形公式:即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=2,an+1= (n∈N+).
(1)計算a2 , a3 , a4 , 并猜測出{an}的通項公式;
(2)用數(shù)學歸納法證明(1)中你的猜測.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的頂點A(5,1),AB邊上的中線CM所在直線方程為2x﹣y﹣5=0,AC邊上的高BH所在直線方程為x﹣2y﹣5=0.求:
(1)頂點C的坐標;
(2)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中,A(1,3),BC邊所在的直線方程為y﹣1=0,AB邊上的中線所在的直線方程為x﹣3y+4=0. (Ⅰ)求B,C點的坐標;
(Ⅱ)求△ABC的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且
(1)求角A的值;
(2)若∠B= ,BC邊上中線AM= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}和{bn}(bn≠0,n∈N*),滿足a1=b1=1,anbn+1﹣an+1bn+bn+1bn=0
(1)令cn= ,證明數(shù)列{cn}是等差數(shù)列,并求{cn}的通項公式
(2)若bn=2n1 , 求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)對價格y(單位:千元/噸)和利潤z的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如表:

x

1

2

3

4

5

y

7.0

6.5

5.5

3.8

2.2

(Ⅰ)求y關于x的線性回歸方程 ;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設該農(nóng)產(chǎn)品可全部賣出,預測當年產(chǎn)量為多少時,年利潤z取到最大值?(保留兩位小數(shù))
參考公式: = =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種汽車,購車費用是10萬元,每年使用的保險費、養(yǎng)路費、汽車費約為0.9萬元,年維修費第一年是0.2萬元,以后逐年遞增0.2萬元,問這種汽車使用多少年時,它的平均費用最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(Ⅰ)解不等式 >0 (Ⅱ)設a>0,b>0,c>0,且a+b+c=1,求證( ﹣1)( ﹣1)( ﹣1)≥8.

查看答案和解析>>

同步練習冊答案