【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且
(1)求角A的值;
(2)若∠B= ,BC邊上中線AM= ,求△ABC的面積.

【答案】
(1)解:∵

∴由正弦定理,得 ,化簡(jiǎn)得cosA= ,

∴A= ;


(2)解:∵∠B= ,∴C=π﹣A﹣B= ,

可知△ABC為等腰三角形,

在△AMC中,由余弦定理,得AM2=AC2+MC2﹣2ACMCcos120°,即7= ,

解得b=2,

∴△ABC的面積S= b2sinC= =


【解析】(1)利用正弦定理化邊為角可求得cosA= ,從而可得A;(2)易求角C,可知△ABC為等腰三角形,在△AMC中利用余弦定理可求b,再由三角形面積公式可求結(jié)果;
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦定理的定義的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握正弦定理:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓具有性質(zhì):若M,N是橢圓C: =1(a>b>0且a,b為常數(shù))上關(guān)于y軸對(duì)稱的兩點(diǎn),P是橢圓上的左頂點(diǎn),且直線PM,PN的斜率都存在(記為kPM , kPN),則kPMkPN= .類比上述性質(zhì),可以得到雙曲線的一個(gè)性質(zhì),并根據(jù)這個(gè)性質(zhì)得:若M,N是雙曲線C: =1(a>0,b>0)上關(guān)于y軸對(duì)稱的兩點(diǎn),P是雙曲線C的左頂點(diǎn),直線PM,PN的斜率都存在(記為kPM , kPN),雙曲線的離心率e= ,則kPMkPN等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1. (Ⅰ)若3是關(guān)于x的方程f(x)﹣g(x)=0的一個(gè)解,求t的值;
(Ⅱ)當(dāng)0<a<1且t=1時(shí),解不等式f(x)≤g(x);
(Ⅲ)若函數(shù)F(x)=afx+tx2﹣2t+1在區(qū)間(﹣1,3]上有零點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列向量組中能作為表示它們所在平面內(nèi)所有向量的基底的是(
A. =(0,0), =(1,﹣2)
B. =(﹣1,2), =(2,﹣4)
C. =(3,5), =(6,10)
D. =(2,﹣3), =(6,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于平面向量 , ,下列結(jié)論正確的個(gè)數(shù)為( ) ①若 = ,則 = ;
②若 =(1,k), =(﹣2,6), ,則k=﹣3;
③非零向量 滿足| |=| |=| |,則 + 的夾角為30°;
④已知向量 ,且 的夾角為銳角,則實(shí)數(shù)λ的取值范圍是
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列函數(shù)中,最小值為2的是(
A.y=2x+2x
B.y=sinx+ (0<x<
C.y=x+
D.y=log3x+ (1<x<3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 滿足Sn= an﹣n(t>0且t≠1,n∈N*
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式(用t,n表示)
(2)當(dāng)t=2時(shí),令cn= ,證明 ≤c1+c2+c3+…+cn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人投籃的水平都比較穩(wěn)定,若三人各自獨(dú)立地進(jìn)行一次投籃測(cè)試,則甲投中而乙不投中的概率為 ,乙投中而丙不投中的概率為 ,甲、丙兩人都投中的概率為
(1)分別求甲、乙、丙三人各自投籃一次投中的概率;
(2)若丙連續(xù)投籃5次,求恰有2次投中的概率;
(3)若丙連續(xù)投籃3次,每次投籃,投中得2分,未投中得0分,在3次投籃中,若有2次連續(xù)投中,而另外1次未投中,則額外加1分;若3次全投中,則額外加3分,記ξ為丙連續(xù)投籃3次后的總得分,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+a.
(1)當(dāng)a=2時(shí),求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x﹣1|,當(dāng)x∈R時(shí),f(x)+g(x)≥3,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案