【題目】在平面直角坐標系中曲線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.

1)求曲線的普通方程以及直線的直角坐標方程;

2)將曲線向左平移2個單位,再將曲線上的所有點的橫坐標縮短為原來的,得到曲線,求曲線上的點到直線的距離的最小值.

【答案】1; 2.

【解析】

1)曲線的參數(shù)方程化簡消參后得到普通方程,利用,對直線的極坐標方程進行化簡,得到的直角坐標方程;

(2)根據變換規(guī)則,得到變換后的曲線的方程,寫出其參數(shù)方程,從而得到曲線上任一點的坐標,利用點到直線的距離公式,結合正弦型函數(shù)的值域,得到最小值.

1)曲線的參數(shù)方程為為參數(shù))

所以,兩式平方后相加得,

即曲線的普通方程為:.

直線的極坐標方程為,

因為,

所以直線的直角坐標方程為:

2)曲線向左平移2個單位,

得到,

再將曲線上的所有點的橫坐標縮短為原來的

得到

即曲線;

所以曲線的參數(shù)方程為為參數(shù))

設曲線上任一點,

則點到直線的距離為:

(其中),

時,取最小值,為

所以點到直線的距離的最小值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以為極點,軸的正半軸為極軸建立的極坐標系中,直線的極坐標方程為,曲線的參數(shù)方程為為參數(shù)).

1)寫出直線及曲線的直角坐標方程;

2)過點且平行于直線的直線與曲線交于,兩點,若,求點的軌跡及其直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某教師調查了名高三學生購買的數(shù)學課外輔導書的數(shù)量,將統(tǒng)計數(shù)據制成如下表格:

男生

女生

總計

購買數(shù)學課外輔導書超過

購買數(shù)學課外輔導書不超過

總計

(Ⅰ)根據表格中的數(shù)據,是否有的把握認為購買數(shù)學課外輔導書的數(shù)量與性別相關;

(Ⅱ)從購買數(shù)學課外輔導書不超過本的學生中,按照性別分層抽樣抽取人,再從這人中隨機抽取人詢問購買原因,求恰有名男生被抽到的概率.

附: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,ADBC,ABBCCD1,AD2,點EF分別在線段AB、AD上,且EFCD,將△AEF沿EF折起到△MEF的位置,并使平面MEF⊥平面BCDFE,得到幾何體MBCDEF,則折疊后的幾何體的體積的最大值為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知fx)=|2x1||2x+1|.

1)求不等式fx)>1的解集.

2)當時,求證:4x2+4x+2>(2x+1fx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學棋藝協(xié)會定期舉辦以棋會友的競賽活動,分別包括中國象棋、圍棋、五子棋、國際象棋四種比賽,每位協(xié)會會員必須參加其中的兩種棋類比賽,且各隊員之間參加比賽相互獨立;已知甲同學必選中國象棋,不選國際象棋,乙同學從四種比賽中任選兩種參與.

1)求甲參加圍棋比賽的概率;

2)求甲、乙兩人參與的兩種比賽都不同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形中,,,的中點,的中點,以為折痕將向上折起,使點折到點,且.

1)求證: ;

2)求與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平行四邊形中,,,,是線段的中點,沿翻折到,使得平面平面.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中國詩詞大會》是央視首檔全民參與的詩詞節(jié)目,節(jié)目以賞中華詩詞,尋文化基因,品生活之美為宗旨.每一期的比賽包含以下環(huán)節(jié):個人追逐賽、攻擂資格爭奪賽擂主爭霸賽,其中擂主爭霸賽攻擂資格爭奪賽獲勝者與上一場擂主進行比拼.“擂主爭霸賽共有九道搶答題,搶到并答對者得一分,答錯則對方得一分,率先獲得五分者即為該場擂主.在《中國詩詞大會》的某一期節(jié)目中,若進行擂主爭霸賽的甲乙兩位選手每道搶答題得到一分的概率都是為0.5,則搶答完七道題后甲成為擂主的概率為________.

查看答案和解析>>

同步練習冊答案