【題目】已知圓C的圓心C在直線上,且與x軸正半軸相切,點(diǎn)C與坐標(biāo)原點(diǎn)O的距離為.

1)求圓C的標(biāo)準(zhǔn)方程;

2)直線l過(guò)點(diǎn) 且與圓C相交于AB兩點(diǎn),求弦長(zhǎng)的最小值及此時(shí)直線l的方程.

【答案】1;(2,.

【解析】

1)結(jié)合直線的方程設(shè)出圓心坐標(biāo)以及半徑,根據(jù)兩點(diǎn)間距離公式以及題設(shè)條件,即可得出圓C的標(biāo)準(zhǔn)方程;

2)當(dāng)直線的斜率不存在時(shí),得出直線的方程,根據(jù)方程得出,當(dāng)直線l的斜率存在時(shí),設(shè)出直線的方程,利用點(diǎn)到直線的距離公式以及弦長(zhǎng)公式得出,進(jìn)而得出弦長(zhǎng)的最小值以及直線的方程.

1)由題可設(shè)圓心,半徑r

.

又∵圓Cx軸正半軸相切

∴圓C的標(biāo)準(zhǔn)方程:

2)①當(dāng)直線l的斜率不存在時(shí),

直線l的方程為x1,此時(shí)弦長(zhǎng)

②當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程:

點(diǎn)C到直線l的距離,則弦長(zhǎng)

當(dāng)k0時(shí),弦長(zhǎng)取最小值

此時(shí)直線l的方程為.

由①②知當(dāng)直線l的方程為時(shí),弦長(zhǎng)取最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,,.

(1)若,試問(wèn)是否存在實(shí)數(shù),使得數(shù)列是等比數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由;

(2)在(1)的條件下,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的部分圖像如圖所示,若,,分別為最高點(diǎn)與最低點(diǎn),為圖象與軸交點(diǎn),且的面積為.

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)若將的圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像,求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖有一景區(qū)的平面圖是一半圓形,其中直徑長(zhǎng)為兩點(diǎn)在半圓弧上滿足,設(shè),現(xiàn)要在景區(qū)內(nèi)鋪設(shè)一條觀光通道,由 組成.

(1)用表示觀光通道的長(zhǎng),并求觀光通道的最大值;

(2)現(xiàn)要在景區(qū)內(nèi)綠化,其中在中種植鮮花,在中種植果樹,在扇形內(nèi)種植草坪,已知單位面積內(nèi)種植鮮花和種植果樹的利潤(rùn)均是種植草坪利潤(rùn)的 倍,則當(dāng)為何值時(shí)總利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若為偶函數(shù),求的值并寫出的增區(qū)間;

(Ⅱ)若關(guān)于的不等式的解集為,當(dāng)時(shí),求的最小值;

(Ⅲ)對(duì)任意的,,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.

1)求橢圓的方程;

2)圓的切線與橢圓相交于、兩點(diǎn),證明:為鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求在點(diǎn)處的切線方程;

2)求證:上僅有個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,又有四個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,地圖上有一豎直放置的圓形標(biāo)志物,圓心為C,與地面的接觸點(diǎn)為G.與圓形標(biāo)志物在同一平面內(nèi)的地面上點(diǎn)P處有一個(gè)觀測(cè)點(diǎn),且PG=50m.在觀測(cè)點(diǎn)正前方10m處(即PD=10m)有一個(gè)高位10m(即ED=10m)的廣告牌遮住了視線,因此在觀測(cè)點(diǎn)所能看到的圓形標(biāo)志的最大部分即為圖中從AF的圓。

1)若圓形標(biāo)志物半徑為25m,以PG所在直線為X軸,G為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,求圓C和直線PF的方程;

2)若在點(diǎn)P處觀測(cè)該圓形標(biāo)志的最大視角(即)的正切值為,求該圓形標(biāo)志物的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案