【題目】以下命題正確的個(gè)數(shù)是

函數(shù)處導(dǎo)數(shù)存在,若;的極值點(diǎn),則的必要不充分條件

實(shí)數(shù)為實(shí)數(shù),的等比中項(xiàng),則

兩個(gè)非零向量,若,則的夾角為鈍角

平面內(nèi)到一個(gè)定點(diǎn)和一條定直線距離相等的點(diǎn)的軌跡叫拋物線

A. B. C. D.

【答案】B

【解析】分析:根據(jù)極值點(diǎn)的性質(zhì),等比中項(xiàng)的定義,向量夾角,拋物線的定義逐一分析給定四個(gè)結(jié)論的真假,可得答案.

詳解:若f′(x0)=0,則x=x0不一定是f(x)的極值點(diǎn),

若x=x0是f(x)的極值點(diǎn),則f′(x0)=0,

故p是q的必要不充分條件,故正確;

實(shí)數(shù)G為實(shí)數(shù)a,b的等比中項(xiàng),則G=,故正確;

兩個(gè)非零向量,若夾角0,則的夾角為鈍角或夾角,故錯(cuò)誤;

平面內(nèi)到一個(gè)定點(diǎn)F和一條定直線l距離相等的點(diǎn)的軌跡,當(dāng)點(diǎn)不在直線上時(shí)叫拋物線,當(dāng)點(diǎn)在直線上時(shí),為直線,故錯(cuò)誤;

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果存在函數(shù)為常數(shù)),使得對(duì)函數(shù)定義域內(nèi)任意都有成立,那么稱為函數(shù)的一個(gè)“線性覆蓋函數(shù)”.給出如下四個(gè)結(jié)論:

①函數(shù)存在“線性覆蓋函數(shù)”;

②對(duì)于給定的函數(shù),其“線性覆蓋函數(shù)”可能不存在,也可能有無數(shù)個(gè);

為函數(shù)的一個(gè)“線性覆蓋函數(shù)”;

④若為函數(shù)的一個(gè)“線性覆蓋函數(shù)”,則

其中所有正確結(jié)論的序號(hào)是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為建立健全國家學(xué)生體質(zhì)健康監(jiān)測(cè)評(píng)價(jià)機(jī)制,激勵(lì)學(xué)生積極參加身體鍛煉,教育部印發(fā)《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)(2014年修訂)》,要求各學(xué)校每學(xué)期開展覆蓋本校各年級(jí)學(xué)生的《標(biāo)準(zhǔn)》測(cè)試工作,并根據(jù)學(xué)生每個(gè)學(xué)期總分評(píng)定等級(jí).某校決定針對(duì)高中學(xué)生,每學(xué)期進(jìn)行一次體質(zhì)健康測(cè)試,以下是小明同學(xué)六個(gè)學(xué)期體質(zhì)健康測(cè)試的總分情況.

學(xué)期

1

2

3

4

5

6

總分(分)

512

518

523

528

534

535

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)說明的線性相關(guān)程度,并用最小二乘法求出關(guān)于的線性回歸方程(線性相關(guān)系數(shù)保留兩位小數(shù));

(2)在第六個(gè)學(xué)期測(cè)試中學(xué)校根據(jù) 《標(biāo)準(zhǔn)》,劃定540分以上為優(yōu)秀等級(jí),已知小明所在的學(xué)習(xí)小組10個(gè)同學(xué)有6個(gè)被評(píng)定為優(yōu)秀,測(cè)試后同學(xué)們都知道了自己的總分但不知道別人的總分,小明隨機(jī)的給小組內(nèi)4個(gè)同學(xué)打電話詢問對(duì)方成績(jī),優(yōu)秀的同學(xué)有人,求的分布列和期望.

參考公式: ,

相關(guān)系數(shù)

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)f(x)=,其中2<m<2,m∈Z,滿足:

(1)f(x)是區(qū)間(0,+∞)上的增函數(shù);

(2)對(duì)任意的x∈R,都有f(x) +f(x)=0.

求同時(shí)滿足條件(1)、(2)的冪函數(shù)f(x)的解析式,并求x∈[0,3]時(shí),f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面與平面、平面都相交,則這三個(gè)平面可能的交線有________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中心在原點(diǎn),焦點(diǎn)在軸上的橢圓,下頂點(diǎn),且離心率.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)經(jīng)過點(diǎn)且斜率為的直線交橢圓于, 兩點(diǎn).在軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購,規(guī)定當(dāng)一次訂購量超過100件時(shí),每多訂購一件,訂購的全部服裝的出廠單價(jià)就降低元,根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購不會(huì)超過600.

1設(shè)一次訂購件,服裝的實(shí)際出廠單價(jià)為元,寫出函數(shù)的表達(dá)式;

2當(dāng)銷售商一次訂購多少件服裝時(shí),該廠獲得的利潤(rùn)最大?其最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率,左、右焦點(diǎn)分別為,直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段的垂直平分線交于點(diǎn)

(1)求點(diǎn)的軌跡的方程;

(2)當(dāng)直線與橢圓相切,交于點(diǎn),,當(dāng)時(shí),求的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)貨卡車以每小時(shí)x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油升,司機(jī)的工資是每小時(shí)14.

(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;

(2)當(dāng)x為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案