【題目】以下命題正確的個(gè)數(shù)是
①函數(shù)在處導(dǎo)數(shù)存在,若;是的極值點(diǎn),則是的必要不充分條件
②實(shí)數(shù)為實(shí)數(shù),的等比中項(xiàng),則
③兩個(gè)非零向量與,若,則與的夾角為鈍角
④平面內(nèi)到一個(gè)定點(diǎn)和一條定直線距離相等的點(diǎn)的軌跡叫拋物線
A. B. C. D.
【答案】B
【解析】分析:根據(jù)極值點(diǎn)的性質(zhì),等比中項(xiàng)的定義,向量夾角,拋物線的定義逐一分析給定四個(gè)結(jié)論的真假,可得答案.
詳解:①若f′(x0)=0,則x=x0不一定是f(x)的極值點(diǎn),
若x=x0是f(x)的極值點(diǎn),則f′(x0)=0,
故p是q的必要不充分條件,故①正確;
②實(shí)數(shù)G為實(shí)數(shù)a,b的等比中項(xiàng),則G=,故②正確;
③兩個(gè)非零向量與,若夾角<0,則與的夾角為鈍角或夾角,故③錯(cuò)誤;
④平面內(nèi)到一個(gè)定點(diǎn)F和一條定直線l距離相等的點(diǎn)的軌跡,當(dāng)點(diǎn)不在直線上時(shí)叫拋物線,當(dāng)點(diǎn)在直線上時(shí),為直線,故④錯(cuò)誤;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在函數(shù)(為常數(shù)),使得對(duì)函數(shù)定義域內(nèi)任意都有成立,那么稱為函數(shù)的一個(gè)“線性覆蓋函數(shù)”.給出如下四個(gè)結(jié)論:
①函數(shù)存在“線性覆蓋函數(shù)”;
②對(duì)于給定的函數(shù),其“線性覆蓋函數(shù)”可能不存在,也可能有無數(shù)個(gè);
③為函數(shù)的一個(gè)“線性覆蓋函數(shù)”;
④若為函數(shù)的一個(gè)“線性覆蓋函數(shù)”,則
其中所有正確結(jié)論的序號(hào)是___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為建立健全國家學(xué)生體質(zhì)健康監(jiān)測(cè)評(píng)價(jià)機(jī)制,激勵(lì)學(xué)生積極參加身體鍛煉,教育部印發(fā)《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)(2014年修訂)》,要求各學(xué)校每學(xué)期開展覆蓋本校各年級(jí)學(xué)生的《標(biāo)準(zhǔn)》測(cè)試工作,并根據(jù)學(xué)生每個(gè)學(xué)期總分評(píng)定等級(jí).某校決定針對(duì)高中學(xué)生,每學(xué)期進(jìn)行一次體質(zhì)健康測(cè)試,以下是小明同學(xué)六個(gè)學(xué)期體質(zhì)健康測(cè)試的總分情況.
學(xué)期 | 1 | 2 | 3 | 4 | 5 | 6 |
總分(分) | 512 | 518 | 523 | 528 | 534 | 535 |
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)說明與的線性相關(guān)程度,并用最小二乘法求出關(guān)于的線性回歸方程(線性相關(guān)系數(shù)保留兩位小數(shù));
(2)在第六個(gè)學(xué)期測(cè)試中學(xué)校根據(jù) 《標(biāo)準(zhǔn)》,劃定540分以上為優(yōu)秀等級(jí),已知小明所在的學(xué)習(xí)小組10個(gè)同學(xué)有6個(gè)被評(píng)定為優(yōu)秀,測(cè)試后同學(xué)們都知道了自己的總分但不知道別人的總分,小明隨機(jī)的給小組內(nèi)4個(gè)同學(xué)打電話詢問對(duì)方成績(jī),優(yōu)秀的同學(xué)有人,求的分布列和期望.
參考公式: ,;
相關(guān)系數(shù);
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=,其中2<m<2,m∈Z,滿足:
(1)f(x)是區(qū)間(0,+∞)上的增函數(shù);
(2)對(duì)任意的x∈R,都有f(x) +f(x)=0.
求同時(shí)滿足條件(1)、(2)的冪函數(shù)f(x)的解析式,并求x∈[0,3]時(shí),f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中心在原點(diǎn),焦點(diǎn)在軸上的橢圓,下頂點(diǎn),且離心率.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)經(jīng)過點(diǎn)且斜率為的直線交橢圓于, 兩點(diǎn).在軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購,規(guī)定當(dāng)一次訂購量超過100件時(shí),每多訂購一件,訂購的全部服裝的出廠單價(jià)就降低元,根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購不會(huì)超過600件.
(1)設(shè)一次訂購件,服裝的實(shí)際出廠單價(jià)為元,寫出函數(shù)的表達(dá)式;
(2)當(dāng)銷售商一次訂購多少件服裝時(shí),該廠獲得的利潤(rùn)最大?其最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的離心率,左、右焦點(diǎn)分別為、,直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段的垂直平分線交于點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)當(dāng)直線與橢圓相切,交于點(diǎn),,當(dāng)時(shí),求的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)貨卡車以每小時(shí)x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com