【題目】運(yùn)貨卡車以每小時(shí)x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.
【答案】(1) y=+x,x∈[50,100] (或y=+x,x∈[50,100]).(2) 當(dāng)x=18千米/時(shí),這次行車的總費(fèi)用最低,最低費(fèi)用的值為26元.
【解析】
(1)先確定所用時(shí)間,再乘以每小時(shí)耗油與每小時(shí)工資的和得到總費(fèi)用表達(dá)式,(2)利用基本不等式求最值即得結(jié)果.
(1)設(shè)所用時(shí)間為t= (h),
y=×2×+14×,x∈[50,100].
所以,這次行車總費(fèi)用y關(guān)于x的表達(dá)式是y=+x,x∈[50,100]
(或y=+x,x∈[50,100]).
(2)y=+x≥26,
當(dāng)且僅當(dāng)=x,
即x=18時(shí)等號(hào)成立.
故當(dāng)x=18千米/時(shí),這次行車的總費(fèi)用最低,最低費(fèi)用的值為26元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下命題正確的個(gè)數(shù)是
①函數(shù)在處導(dǎo)數(shù)存在,若;是的極值點(diǎn),則是的必要不充分條件
②實(shí)數(shù)為實(shí)數(shù),的等比中項(xiàng),則
③兩個(gè)非零向量與,若,則與的夾角為鈍角
④平面內(nèi)到一個(gè)定點(diǎn)和一條定直線距離相等的點(diǎn)的軌跡叫拋物線
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司擬設(shè)計(jì)一個(gè)扇環(huán)形狀的花壇(如圖所示),該扇環(huán)是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過點(diǎn),的兩條線段圍成.設(shè)圓弧和圓弧所在圓的半徑分別為米,圓心角為θ(弧度).
(1)若,,求花壇的面積;
(2)設(shè)計(jì)時(shí)需要考慮花壇邊緣(實(shí)線部分)的裝飾問題,已知直線部分的裝飾費(fèi)用為60元/米,弧線部分的裝飾費(fèi)用為90元/米,預(yù)算費(fèi)用總計(jì)1200元,問線段AD的長(zhǎng)度為多少時(shí),花壇的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年北京冬奧會(huì)的申辦成功與“3億人上冰雪”口號(hào)的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計(jì)劃在一年級(jí)開設(shè)冰球課程,為了解學(xué)生對(duì)冰球運(yùn)動(dòng)的興趣,隨機(jī)從該校一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對(duì)冰球運(yùn)動(dòng)有興趣的占,而男生有10人表示對(duì)冰球運(yùn)動(dòng)沒有興趣額.
(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對(duì)冰球是否有興趣與性別有關(guān)”?
有興趣 | 沒興趣 | 合計(jì) | |
男 | 55 | ||
女 | |||
合計(jì) |
(2)若將頻率視為概率,現(xiàn)再?gòu)脑撔R荒昙?jí)全體學(xué)生中,采用隨機(jī)抽樣的方法每次抽取1名學(xué)生,抽取5次,記被抽取的5名學(xué)生中對(duì)冰球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 (n∈N*)的展開式中第五項(xiàng)的系數(shù)的與第三項(xiàng)的系數(shù)的比是10∶1.
(1)求展開式中各項(xiàng)系數(shù)的和;
(2)求展開式中含的項(xiàng);
(3)求展開式中系數(shù)最大的項(xiàng)和二項(xiàng)式系數(shù)最大的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲題型:給出如圖數(shù)陣表格形式,表格內(nèi)是按某種規(guī)律排列成的有限個(gè)正整數(shù).
(1)記第一行的自左至右構(gòu)成數(shù)列,是的前項(xiàng)和,試求;
(2)記為第列第行交點(diǎn)的數(shù)字,觀察數(shù)陣請(qǐng)寫出表達(dá)式,若,試求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關(guān),在市第一人民醫(yī)院隨機(jī)對(duì)入院50人進(jìn)行了問卷調(diào)查,得到了如表的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | 5 | ||
女 | 10 | ||
合計(jì) | 50 |
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.
參考格式:,其中 .
下面的臨界值僅供參考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),對(duì)于任意的 ,都有, 當(dāng)時(shí),,且.
( I ) 求的值;
(II) 當(dāng)時(shí),求函數(shù)的最大值和最小值;
(III) 設(shè)函數(shù),判斷函數(shù)g(x)最多有幾個(gè)零點(diǎn),并求出此時(shí)實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一個(gè)內(nèi)角為且邊長(zhǎng)為的菱形沿著較短的對(duì)角線折成一個(gè)二面角為的空間四邊形,則此空間四邊形的外接球的半徑為
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com