【題目】設(shè)0<a<1,定義a1=1+a, , 求證:對任意n∈N+ , 有
【答案】【解答】
證明:(1)當(dāng)n=1時,a1=1+a>1,又,顯然命題成立。
(2)假設(shè)n=k()時,命題成立,即.
即當(dāng)n=k+1時,由遞推公式,知,
由假設(shè)可得.
于是當(dāng)n=k+1時,命題也成立,即.
由(1)(2)可知,對任意有.
【解析】一般地,證明一個與正整數(shù)n有關(guān)的命題,可按下列步驟進(jìn)行:(1)(歸納奠基)證明當(dāng)n取第一個值時命題成立;(2)(歸納遞推)假設(shè)n=k(k≥n0,k∈N+)時命題成立,證明當(dāng)n=k+1時命題也成立.
只要完成這兩個步驟,就可以斷定命題對從n0開始的所有正整數(shù)n都成立.上述證明方法叫做數(shù)學(xué)歸納法
【考點精析】通過靈活運用數(shù)學(xué)歸納法的步驟,掌握
即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某品牌手機(jī)公司生產(chǎn)某款手機(jī)的年固定成本為40萬美元,每生產(chǎn)1萬部還需另投入16萬美元.設(shè)公司一年內(nèi)共生產(chǎn)該款手機(jī)x萬部并全部銷售完,每萬部的銷售收入為R(x)萬美元,且R(x)= .
(1)寫出年利潤f(x)(萬美元)關(guān)于年產(chǎn)量x(萬部)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬部時,公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1的參數(shù)方程為 (φ為參數(shù)).以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4 cosθ.
(1)求C1與C2交點的直角坐標(biāo);
(2)已知曲線C3的參數(shù)方程為 (0≤α<π,t為參數(shù),且t≠0),C3與C1相交于點P,C2與C3相交于點Q,且|PQ|=8,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)討論函數(shù)極值點的個數(shù),并說明理由;
(2)若成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校制定學(xué)校發(fā)展規(guī)劃時,對現(xiàn)有教師進(jìn)行年齡狀況和接受教育程度(學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:
學(xué)歷 | 35歲以下 | 35至50歲 | 50歲以上 |
本科 | 80 | 30 | 20 |
研究生 | x | 20 | y |
(Ⅰ)用分層抽樣的方法在35至50歲年齡段的教師中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有l(wèi)人的學(xué)歷為研究生的概率;
(Ⅱ)在該校教師中按年齡狀況用分層抽樣的方法抽取N個人,其中35歲以下48人,50歲以上10人,再從這N個人中隨機(jī)抽取l人,此人的年齡為50歲以上的概率為 ,求x、y的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一曲線C是與兩個定點O(0,0),A(3,0)的距離比為 的點的軌跡.
(1)求曲線C的方程,并指出曲線類型;
(2)過(﹣2,2)的直線l與曲線C相交于M,N,且|MN|=2 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列 的各項均為正整數(shù),對于任意n∈N* , 都有 成立,且 .
(1)求 , 的值;
(2)猜想數(shù)列 的通項公式,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(1﹣x)的定義域為M,函數(shù) 的定義域為N,則M∩N=( )
A.{x|x<1且x≠0}
B.{x|x≤1且x≠0}
C.{x|x>1}
D.{x|x≤1}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com