【題目】設(shè)函數(shù),,.
(1)當(dāng),,求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值;
(3)當(dāng)時(shí),若函數(shù)恰有兩個(gè)零點(diǎn),,求證:.
【答案】(1)(2)(3)證明見解析
【解析】
(1)利用導(dǎo)數(shù)的幾何意義求出斜率,再由點(diǎn)斜式可求得線在點(diǎn)處的切線方程;
(2)利用,可得,令,可解得,
,可得,再令,通過兩次求導(dǎo)可得,可得,從而可證.
(1)依題意得:,則,
,,
所以曲線在點(diǎn)處的切線方程:,即
(2)
當(dāng)時(shí),,在上單調(diào)遞增,
此時(shí),∴
當(dāng)時(shí),令,且當(dāng)時(shí),,遞減;
當(dāng)時(shí),,遞增
∴,∴(舍去)
綜上:.
(3)當(dāng)時(shí),
∴,②①,得
∴,
令,則,
所以 ,因?yàn)?/span>,所以,
所以,
所以,
令,
則,
所以, 因?yàn)?/span>,所以,
所以為上的增函數(shù),
所以,
所以為上的增函數(shù),
所以,即,
所以,
因?yàn)?/span>,所以,
所以,即,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,,,點(diǎn)E,F分別在,,且,.設(shè).
(1)當(dāng)時(shí),求異面直線與所成角的大;
(2)當(dāng)平面平面時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬元)對(duì)年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對(duì)近六年的年宣傳費(fèi)和年銷售量()的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):
年份 | ||||||
年宣傳費(fèi)(萬元) | ||||||
年銷售量(噸) |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬元)與年銷售量(噸)之間近似滿足關(guān)系式().對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:
(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;
(2)已知這種產(chǎn)品的年利潤與,的關(guān)系為若想在年達(dá)到年利潤最大,請(qǐng)預(yù)測(cè)年的宣傳費(fèi)用是多少萬元?
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計(jì)分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),關(guān)于的不等式只有1個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,.
(1)設(shè)與相交于點(diǎn),,且平面,求實(shí)數(shù)的值;
(2)若,且,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),試討論的單調(diào)性;
(2)若對(duì)任意的,方程恒有個(gè)不等的實(shí)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)若與有且僅有三個(gè)公共點(diǎn),求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;
(2)已知點(diǎn)、的極坐標(biāo)分別為和,直線與曲線相交于,兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com