【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程是為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;

(2)已知點(diǎn)、的極坐標(biāo)分別為,直線與曲線相交于,兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.

【答案】(1)線的普通方程為,曲線的直角坐標(biāo)方程為;(2).

【解析】

試題(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數(shù)方程化為普通方程,進(jìn)而利用即可化為極坐標(biāo)方程,同理可得曲線C2的直角坐標(biāo)方程;
(2)的圓心,得,設(shè),,代入中即可得解.

試題解析:

(1)曲線的普通方程為,化成極坐標(biāo)方程為

曲線的直角坐標(biāo)方程為

(2)在直角坐標(biāo)系下,,,

恰好過的圓心,
,是橢圓上的兩點(diǎn),

在極坐標(biāo)下,設(shè),分別代入中,

,

,即

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,.

1)當(dāng),求曲線在點(diǎn)處的切線方程;

2)若函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值;

3)當(dāng)時(shí),若函數(shù)恰有兩個(gè)零點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求的解析式;

(2)判斷方程內(nèi)的解的個(gè)數(shù),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)(其中.

1)判斷函數(shù)的奇偶性,并說明理由;

2)求函數(shù)的反函數(shù)

3)若兩個(gè)函數(shù)在區(qū)間上恒滿足,則函數(shù)在閉區(qū)間上是分離的.試判斷的反函數(shù)在閉區(qū)間上是否分離?若分離,求出實(shí)數(shù)的取值范圍;若不分離,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)

(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;

(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對(duì)任意n∈N*,都有bn+t≤t2,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,直線與拋物線交于兩點(diǎn),過這兩點(diǎn)分別作拋物線的切線,且這兩條切線相交于點(diǎn).

(1)若的坐標(biāo)為,求的值;

(2)設(shè)線段的中點(diǎn)為,點(diǎn)的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點(diǎn)為,且直線與拋物線交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過正方體的頂點(diǎn)作平面,使每條棱在平面的正投影的長度都相等,則這樣的平面可以作(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計(jì)表:

空調(diào)類

冰箱類

小家電類

其它類

營業(yè)收入占比

90.10%

4.98%

3.82%

1.10%

凈利潤占比

95.80%

3.82%

0.86%

則下列判斷中不正確的是(

A.該公司2018年度冰箱類電器銷售虧損

B.該公司2018年度小家電類電器營業(yè)收入和凈利潤相同

C.該公司2018年度凈利潤主要由空調(diào)類電器銷售提供

D.剔除冰箱類銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤占比將會(huì)降低

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為

1)求曲線C1的極坐標(biāo)方程以及曲線C2的直角坐標(biāo)方程;

2)若直線lykx與曲線C1、曲線C2在第一象限交于PQ,且|OQ||PQ|,點(diǎn)M的直角坐標(biāo)為(10),求△PMQ的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案