【題目】若函數(shù)對定義域內(nèi)的每一個值,在其定義域內(nèi)都存在唯一的,使成立,則稱該函數(shù)為“依賴函數(shù)”.
(1)判斷函數(shù)是否為“依賴函數(shù)”,并說明理由;
(2)若函數(shù)在定義域上為“依賴函數(shù)”,求的取值范圍;
(3)已知函數(shù)在定義域上為“依賴函數(shù)”.若存在實數(shù),使得對任意的,不等式都成立,求實數(shù)的最大值.
【答案】(1)不是“依賴函數(shù)”;(2),(3)
【解析】
(1)取特殊值,得到,無解,由此證得不是“依賴函數(shù)”.(2)根據(jù)的單調(diào)性和函數(shù)值為正數(shù),得到,化簡后求得的關系式,代入并化簡,利用二次函數(shù)單調(diào)性求得的取值范圍.(3)對分成,,兩種情況,根據(jù)“依賴函數(shù)”的定義,求得的值.由此化簡不等式,利用判別式和對鉤函數(shù)的性質(zhì),求得實數(shù)的最大值.
解:(1)對于函數(shù)的定義域內(nèi)存在,則,無解.
故不是“依賴函數(shù)”;
(2)因為在遞增,故,即,
由,故,得,
從而在上單調(diào)遞增,故,
(3)①若,故在上最小值為0,此時不存在,舍去;
②若故在上單調(diào)遞減,
從而,解得(舍)或.
從而,存在,使得對任意的,有不等式都成立,
即恒成立,由,
得,由,可得,
又在單調(diào)遞減,故當時,,
從而,解得,
綜上,故實數(shù)的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】“既要金山銀山,又要綠水青山”。某風景區(qū)在一個直徑為米的半圓形花圓中設計一條觀光線路。打算在半圓弧上任選一點(與不重合),沿修一條直線段小路,在路的兩側(cè)(注意是兩側(cè))種植綠化帶;再沿弧修一條弧形小路,在小路的一側(cè)(注意是一側(cè))種植綠化帶,小路與綠化帶的寬度忽略不計。
(1)設(弧度),將綠化帶的總長度表示為的函數(shù);
(2)求綠化帶的總長度的最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,曲線的參數(shù)方程為:(為參數(shù)).
(1)求曲線,的直角坐標方程;
(2)設曲線,交于點,,已知點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線,,C與l有且僅有一個公共點.
(Ⅰ)求a;
(Ⅱ)O為極點,A,B為C上的兩點,且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有9只球,其中標有數(shù)字1,2,3,4的小球各2個,標數(shù)字5的小球有1個.從袋中任取3個小球,每個小球被取出的可能性都相等,用表示取出的3個小球上的最大數(shù)字.
(1)求取出的3個小球上的數(shù)字互不相同的概率;
(2)求隨機變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,.
(1)求證:平面平面;
(2)過的平面交于點,若平面把四面體分成體積相等的兩部分,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)若在上的最大值為,求實數(shù)b的值;
(Ⅱ)若對任意x∈[1,e],都有恒成立,求實數(shù)a的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,設,對任意給定的正實數(shù)a,曲線y=F(x)上是否存在兩點P、Q,使得△POQ是以O(O為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱柱,平面,P是內(nèi)一點,點E,F在直線上運動,若直線和所成角的最小值與直線和平面所成角的最大值相等,則滿足條件的點P的軌跡是( )
A.圓的一部分B.橢圓的一部分C.拋物線的一部分D.雙曲線的一部分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com