【題目】如圖,在三棱錐P-ABC中,D,E,F分別為PC,AC,AB的中點.已知PA⊥AC,PA=6,BC=8,DF=5.
求證:(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
【答案】詳見解析
【解析】試題分析:(1)由D、E為PC、AC的中點,得出DE∥PA,從而得出PA∥平面DEF;(2)要證平面BDE⊥平面ABC,只需證DE⊥平面ABC,即證DE⊥EF,且DE⊥AC即可.
試題解析:
(1)∵D,E分別為棱PC,AC的中點,∴DE∥PA.
又∵PA平面DEF,DE平面DEF,
∴直線PA∥平面DEF.
(2)∵D、E、F分別為PC、AC、AB的中點,PA=6,BC=8,
∴DE∥PA,DE=PA=3,EF=BC=4.
又∵DF=5,故DF2=DE2+EF2,
∴∠DEF=90°,即DE⊥EF.
又PA⊥AC,DE∥PA,∴DE⊥AC.
∵AC∩EF=E,AC平面ABC,EF平面ABC,∴DE⊥平面ABC.
又DE平面BDE,∴平面BDE⊥平面ABC.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcos(x-).
(Ⅰ)求函數(shù)f(x)的最小正周期.
(Ⅱ)當x∈[0, ]時,求函數(shù)f(x)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率為,且上焦點為,過的動直線與橢圓相交于、兩點.設點,記、的斜率分別為和.
(1)求橢圓的方程;
(2)如果直線的斜率等于,求的值;
(3)探索是否為定值?如果是,求出該定值;如果不是,求出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓點, 是圓上任意一點,線段的垂直平分線和半徑相交于點。
(Ⅰ)當點在圓上運動時,求點的軌跡方程;
(Ⅱ)直線與點的軌跡交于不同兩點和,且(其中 O 為坐標
原點),求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
① “若,則有實根”的逆否命題為真命題;
②命題“”為真命題的一個充分不必要條件是;
③命題“,使得”的否定是真命題;
④命題函數(shù)為偶函數(shù),命題函數(shù)在上為增函數(shù),
則為真命題.
其中,正確的命題是( )
A. ①② B. ①③ C. ②③ D. ③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1的底面是邊長為4的正三角形,AA1⊥平面ABC,AA1=2,M為A1B1的中點.
(1)求證:MC⊥AB;
(2)在棱CC1上是否存在點P,使得MC⊥平面ABP?若存在,確定點P的位置;若不存在,說明理由.
(3)若點P為CC1的中點,求二面角B-AP-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=lnx-x+a+1.
(1)若存在x∈(0,+∞),使得f(x)≥0成立,求a的取值范圍;
(2)求證:在(1)的條件下,當x>1時, x2+ax-a>xlnx+成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱臺ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求證:BF⊥平面ACFD;
(2)求二面角B-AD-F的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為常數(shù),對任意,均有恒成立.下列說法:
①的周期為;
②若為常數(shù))的圖像關于直線對稱,則;
③若且,則必有;
④已知定義在上的函數(shù)對任意均有成立,且當時, ;又函數(shù)為常數(shù)),若存在使得成立,則的取值范圍是.其中說法正確的是____.(填寫所有正確結(jié)論的編號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com