【題目】為提倡節(jié)能減排,同時減輕居民負(fù)擔(dān),廣州市積極推進(jìn)一戶一表工程非一戶一表用戶電費(fèi)采用合表電價收費(fèi)標(biāo)準(zhǔn):一戶一表用戶電費(fèi)采用階梯電價收取,其11月到次年4月起執(zhí)行非夏季標(biāo)準(zhǔn)如下:

第一檔

第二檔

第三檔

每戶每月用電量單位:度

電價單位:元

例如:某用戶11月用電410度,采用合表電價收費(fèi)標(biāo)準(zhǔn),應(yīng)交電費(fèi)元,若采用階梯電價收費(fèi)標(biāo)準(zhǔn),應(yīng)交電費(fèi)元.

為調(diào)查階梯電價是否能到減輕居民負(fù)擔(dān)的效果,隨機(jī)調(diào)查了該市100戶的11月用電量,工作人員已經(jīng)將90戶的月用電量填在下面的頻率分布表中,最后10戶的月用電量單位:度為:88、268370、140440、420、520、320、230、380

1)在答題卡中完成頻率分布表,并繪制頻率分布直方圖;

根據(jù)已有信息,試估計全市住戶11月的平均用電量同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表;

設(shè)某用戶11月用電量為x,按照合表電價收費(fèi)標(biāo)準(zhǔn)應(yīng)交元,按照階梯電價收費(fèi)標(biāo)準(zhǔn)應(yīng)交元,請用x表示,并求當(dāng)時,x的最大值,同時根據(jù)頻率分布直方圖估計階梯電價能否給不低于的用戶帶來實(shí)惠?

【答案】(1)見解析(2)324 3的最大值為423,估計階梯電價能給不低于的用戶帶來實(shí)惠.

【解析】

1)根據(jù)題意寫出頻率分布表,畫出頻率分布直方圖即可;

(2)根據(jù)數(shù)據(jù),同一組數(shù)據(jù)用該區(qū)間的中間值代表,計算11月的平均用電量即可;

(3)可得,由題列不等式,計算可得x的取值范圍及x的最大值,同時可得時的頻率,比較可得答案.

解:頻率分布表如下:

組別

月用電量

頻數(shù)

頻率

4

12

24

30

26

4

合計

100

1

頻率分布直方圖如下:

100戶用戶11月的平均用電量:

所以估計全市住戶11月的平均用電量為324度.

,

,

,得,

解得,

,的最大值為423

根據(jù)頻率分布直方圖,時的頻率為:

,

故估計階梯電價能給不低于的用戶帶來實(shí)惠.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且.

1)確定的解析式;

2)判斷上的單調(diào)性,并用定義證明;

3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國清朝數(shù)學(xué)家李善蘭在1859年翻譯《代數(shù)學(xué)》中首次將譯做:函數(shù),沿用至今,為什么這么翻譯,書中解釋說凡此變數(shù)中函彼變數(shù)者,則此為彼之函數(shù)”1930年美國人給出了我們課本中所學(xué)的集合論的函數(shù)定義,已知集合,,給出下列四個對應(yīng)法則,請由函數(shù)定義判斷,其中能構(gòu)成從的函數(shù)的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公園要設(shè)計如圖所示的景觀窗格(其結(jié)構(gòu)可以看成矩形在四個角處對稱地截去四個全等的三角形所得,如圖二中所示多邊形),整體設(shè)計方案要求:內(nèi)部井字形的兩根水平橫軸米,兩根豎軸米,記景觀窗格的外框(如圖二實(shí)線部分,軸和邊框的粗細(xì)忽略不計)總長度為米.

(1)若,且兩根橫軸之間的距離為米,求景觀窗格的外框總長度;

(2)由于預(yù)算經(jīng)費(fèi)限制,景觀窗格的外框總長度不超過米,當(dāng)景觀窗格的面積(多邊形的面積)最大時,給出此景觀窗格的設(shè)計方案中的大小與的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間直角坐標(biāo)系中,已知正四棱錐的高,點(diǎn)分別在軸和軸上,且,點(diǎn)是棱的中點(diǎn).

(1)求直線與平面所成角的正弦值;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

1求圓C的普通方程和直線l的直角坐標(biāo)方程;

2設(shè)M是直線l上任意一點(diǎn),過M做圓C切線,切點(diǎn)為AB,求四邊形AMBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司共有職工1500人,其中男職工1050人,女職工450人.為調(diào)查該公司職工每周平均上網(wǎng)的時間,采用分層抽樣的方法,收集了300名職工每周平均上網(wǎng)時間的樣本數(shù)據(jù)(單位:小時)

男職工

女職工

總計

每周平均上網(wǎng)時間不超過4個小時

每周平均上網(wǎng)時間超過4個小時

70

總計

300

(Ⅰ)應(yīng)收集多少名女職工樣本數(shù)據(jù)?

(Ⅱ)根據(jù)這300個樣本數(shù)據(jù),得到職工每周平均上網(wǎng)時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,.試估計該公司職工每周平均上網(wǎng)時間超過4小時的概率是多少?

(Ⅲ)在樣本數(shù)據(jù)中,有70名女職工的每周平均上網(wǎng)時間超過4個小時.請將每周平均上網(wǎng)時間與性別的列聯(lián)表補(bǔ)充完整,并判斷是否有95%的把握認(rèn)為“該公司職工的每周平均上網(wǎng)時間與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中

(i)當(dāng)時,若,則實(shí)數(shù)的取值范圍是___________;

(ii) 若存在實(shí)數(shù)使得方程有兩個實(shí)根,則實(shí)數(shù)的取值范圍是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為為參數(shù)),,為過點(diǎn)的兩條直線,,兩點(diǎn),,兩點(diǎn),且的傾斜角為,.

(1)求的極坐標(biāo)方程;

(2)當(dāng)時,求點(diǎn),,,四點(diǎn)的距離之和的最大值.

查看答案和解析>>

同步練習(xí)冊答案