【題目】已知函數(shù), 且.
(Ⅰ)當時,令, 為常數(shù),求函數(shù)的零點的個數(shù);
(Ⅱ)若不等式在上恒成立,求實數(shù)的取值范圍.
【答案】(Ⅰ)見解析;(Ⅱ)
【解析】試題分析:
(1)首先對函數(shù)求導,然后結(jié)合導函數(shù)與原函數(shù)的關(guān)系可得:
當時,函數(shù)有一個零點;
當時,函數(shù)沒有零點;
當時,函數(shù)有兩個零點.
(2)首先求解 ,據(jù)此分類討論求解函數(shù)的最小值,最后結(jié)合恒成立的條件可求得實數(shù)的取值范圍是.
試題解析:
(Ⅰ)當時, ,
所以
令,解得或(舍去)
當時, ,所以在上單調(diào)遞減
當時, ,所以在上單調(diào)遞增
所以是的極小值點, 的最小值為
當,即時,函數(shù)有一個零點
當,即時,函數(shù)沒有零點
當,即時,函數(shù)有兩個零點
(Ⅱ)由已知
令,解得.
由于
①若,則,故當時, ,因此在上單調(diào)遞減,所以,又因為
則不成立
②若,則,故當時, ;當時, ,即在上單調(diào)遞減,在上單調(diào)遞增
所以
因為,所以
則
因此當時, 恒成立
③若,則,故當時, ,因此在上單調(diào)遞增,
故,令,化簡得
解得,所以
綜上所述,實數(shù)的取值范圍是
科目:高中數(shù)學 來源: 題型:
【題目】已知點是拋物線的焦點, 若點在上,且.
(1)求的值;
(2)若直線經(jīng)過點且與交于(異于)兩點, 證明: 直線與直線的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的左、右頂點分別為、,上、下頂點分別為、, 為坐標原點,四邊形的面積為,且該四邊形內(nèi)切圓的方程為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若、是橢圓上的兩個不同的動點,直線、的斜率之積等于,試探求的面積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為實數(shù), 為自然對數(shù)的底數(shù)),曲線在處的切線與直線平行.
(1)求實數(shù)的值,并判斷函數(shù)在區(qū)間內(nèi)的零點個數(shù);
(2)證明:當時, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=3n+m(m為常數(shù),n∈N+)
(1)求a1 , a2 , a3;
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)m的值及an;
(3)對于(2)中的an , 記f(n)=λa2n+1﹣4λan+1﹣7,若f(n)<0對任意的正整數(shù)n恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正四棱錐中, , , 分別為, 的中點.
(Ⅰ)求證: 平面;
(Ⅱ)求異面直線與所成角的余弦值;
(Ⅲ)若平面與棱交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一段圓錐曲線,曲線與兩個坐標軸的交點分別是, , .
(Ⅰ)若該曲線表示一個橢圓,設直線過點且斜率是,求直線與這個橢圓的公共點的坐標.
(Ⅱ)若該曲線表示一段拋物線,求該拋物線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com