【題目】已知,,其中.
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若恒成立,求的最大值.
【答案】(Ⅰ)在上單調(diào)遞減,在上單調(diào)遞增;(Ⅱ).
【解析】
(Ⅰ)求函數(shù)導(dǎo)數(shù),利用導(dǎo)數(shù)可研究函數(shù)的單調(diào)性;
(Ⅱ)由條件可得 在上恒成立, 求導(dǎo)得,分別討論,和三種情況,研究的最小值的取值情況,從而即可得解.
(Ⅰ)時,,定義域是全體實數(shù),求導(dǎo)得,
令,所以在上單調(diào)遞減,在上單調(diào)遞增
(Ⅱ)令 在上恒成立,則 在上恒成立
求導(dǎo)得.
若,顯然可以任意小,不符合題意.
若,則最大也只能取0.
當(dāng)時,令 ,
于是在上單調(diào)遞減,在單調(diào)遞增,在取唯一的極小值也是最小值
,
令,則,
令.
所以在上單調(diào)遞增,在單調(diào)遞減,
在取唯一極大值也是最大值,此時,,所以的最大值等于.
備注一:結(jié)合圖象,指數(shù)函數(shù)在直線的上方,斜率顯然,再討論的情況.
備注二:考慮到 在上恒成立,令即得.取,
證明在上恒成立也給滿分.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為,.
(1)求直線與圓相切的概率;
(2)將,,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子里裝有大小均勻的個小球,其中有紅色球個,編號分別為;白色球個, 編號分別為, 從盒子中任取個小球(假設(shè)取到任何—個小球的可能性相同).
(1)求取出的個小球中,含有編號為的小球的概率;
(2)在取出的個小球中, 小球編號的最大值設(shè)為,求隨機變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是圓:上一動點,線段與圓:相交于點.直線經(jīng)過,并且垂直于軸,在上的射影點為.
(1)求點的軌跡的方程;
(2)設(shè)圓與軸的左、右交點分別為,,點是曲線上的點(點與,不重合),直線,與直線:分別相交于點,,求證:以直徑的圓經(jīng)過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 若命題均為真命題,則命題為真命題
B. “若,則”的否命題是“若”
C. 在,“”是“”的充要條件
D. 命題“”的否定為“”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平行四邊形中,,,,以對角線為折痕把折起,使點到圖2所示點的位置,使得.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某學(xué)校準(zhǔn)備修建一個面積為2400平方米的矩形活動場地(圖中ABCD)的圍欄,按照修建要求,中間用圍墻EF隔開,使得ABEF為矩形,EFCD為正方形,設(shè)米,已知圍墻(包括EF)的修建費用均為每米500元,設(shè)圍墻(包括EF)的修建總費用為y元.
(1)求出y關(guān)于x的函數(shù)解析式及x的取值范圍;
(2)當(dāng)x為何值時,圍墻(包括EF)的修建總費用y最。坎⑶蟪鰕的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2﹣3x在x=﹣1和x=3處取得極值.
(1)求a,b的值
(2)求f(x)在[﹣4,4]內(nèi)的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com