【題目】設(shè).

(I)求的單調(diào)區(qū)間和最小值;

(II)討論的大小關(guān)系;

(III)求的取值范圍,使得對(duì)任意恒成立.

【答案】(1)單增區(qū)間為,單減區(qū)間為, 的最小值是;(2)見解析(3)

【解析】試題分析:(1)根據(jù)條件易知,求導(dǎo),從而可知的單調(diào)減區(qū)間, 的單調(diào)遞增區(qū)間, 的最小值為;(2)構(gòu)造函數(shù),則,從而遞減,而,從而當(dāng),,,當(dāng)時(shí),,;(3)根據(jù)題意可知恒成立等價(jià)于,由(1)可知,即解不等式,從而解得

試題解析:(1, ,,,令,得,當(dāng)時(shí), , 是減函數(shù),故的單調(diào)減區(qū)間,當(dāng)時(shí), , 是增函數(shù),故的單調(diào)遞增區(qū)間,的唯一極值點(diǎn),且為極小值點(diǎn),從而是最小值點(diǎn),的最小值為

2,設(shè),遞減,

當(dāng), ,即,當(dāng),,當(dāng)時(shí),,;

3)由(1)知的最小值為,,對(duì)任意成立等價(jià)于,

,從而得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個(gè)命題: ①函數(shù) 的一條對(duì)稱軸是x= ;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)( ,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若 ,則x1﹣x2=kπ,其中k∈Z;
⑤函數(shù)f(x)=sinx+2|sinx|,x∈[0,2π]的圖象與直線y=k有且僅有兩個(gè)不同的交點(diǎn),則k的取值范圍為(1,3).
以上五個(gè)命題中正確的有(填寫所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O的方程為x2+y2=4,P是圓O上的一個(gè)動(dòng)點(diǎn),若線段OP的垂直平分線總是被平面區(qū)域|x|+|y|≥a覆蓋,則實(shí)數(shù)a的取值范圍是(
A.0≤a≤2
B.
C.0≤a≤1
D.a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,奇函數(shù)的個(gè)數(shù)為( ) ①y=x2sinx ②y=sinxx ③y=xcosx , x ④y=tanx
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,最小正周期是π且在區(qū)間 上是增函數(shù)的是(
A.y=sin2x
B.y=sinx
C.y=tan
D.y=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a∈R,解關(guān)于x的不等式ax2﹣(a+1)x+1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+x2﹣ax(a∈R)
(1)a=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤2x2恒成立,求實(shí)數(shù)a的取值范圍;
(3)求證;lnn> + +1 +…+ (n∈N+)且n≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 若對(duì)于任意的n∈N* , 都有Sn=2an﹣3n.
(1)求證{an+3}是等比數(shù)列
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)是定義在R上的偶函數(shù),f(0)=0,當(dāng)x>0時(shí),f(x)=log x.
(1)求 f(﹣4)的函數(shù)值;
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案