【題目】設(shè)a∈R,解關(guān)于x的不等式ax2﹣(a+1)x+1<0.

【答案】解:①當(dāng)a=0時(shí),不等式化為﹣x+1<0,解得x>1; 當(dāng)a≠0時(shí),分解因式得a(x﹣ )(x﹣1)<0;
②當(dāng)a<0時(shí),原不等式等價(jià)于(x﹣ )(x﹣1)>0,
<1,解不等式得x>1或x< ;
③當(dāng)0<a<1時(shí),1< ,解不等式得1<x< ;
④當(dāng)a>1時(shí), <1,解不等式得 <x<1;
⑤當(dāng)a=1時(shí),不等式化為(x﹣1)2<0,解為
綜上,a=0時(shí),不等式的解集是{x|x>1};
a<0時(shí),不等式的解集為{x|x>1或x< };
0<a<1時(shí),不等式的解集為{x|1<x< };
a>1時(shí),不等式的解集為{x| <x<1};
a=1時(shí),不等式的解集為
【解析】討論a=0和a≠0時(shí),求出對(duì)應(yīng)不等式的解集即可.
【考點(diǎn)精析】掌握解一元二次不等式是解答本題的根本,需要知道求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某客運(yùn)公司用A,B兩種型號(hào)的車輛承擔(dān)甲、乙兩地間的長途客運(yùn)業(yè)務(wù),每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過21輛車的客運(yùn)車隊(duì),并要求B型車不多于A型車7輛.若每天要以不少于900人運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的營運(yùn)成本最小,那么應(yīng)配備A型車、B型車各多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校舉行運(yùn)動(dòng)會(huì),其中三級(jí)跳遠(yuǎn)的成績?cè)?.0米(四舍五入,精確到0.1米)以上的進(jìn)入決賽,把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(Ⅰ)求進(jìn)入決賽的人數(shù);
(Ⅱ)若從該校學(xué)生(人數(shù)很多)中隨機(jī)抽取兩名,記X表示兩人中進(jìn)入決賽的人數(shù),求X的分布列及數(shù)學(xué)期望;
(Ⅲ)經(jīng)過多次測試后發(fā)現(xiàn),甲成績均勻分布在8~10米之間,乙成績均勻分布在9.5~10.5米之間,現(xiàn)甲,乙各跳一次,求甲比乙遠(yuǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中既是奇函數(shù)又在區(qū)間[﹣1,1]上單調(diào)遞減的是(
A.y=sinx
B.a<b
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè).

(I)求的單調(diào)區(qū)間和最小值;

(II)討論的大小關(guān)系;

(III)求的取值范圍,使得對(duì)任意恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果sin3θ﹣cos3θ>cosθ﹣sinθ,且θ∈(0,2π),那么角θ的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) .

(1) 關(guān)于的方程在區(qū)間上有解,求的取值范圍;

(2) 當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=( 2(x>1)
(1)求f(x)的反函數(shù)及其定義域;
(2)若不等式(1﹣ )f1(x)>a(a﹣ )對(duì)區(qū)間x∈[ , ]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在處的切線過點(diǎn), .

(1)若,求函數(shù)的極值點(diǎn);

(2)設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,證明: .(提示

查看答案和解析>>

同步練習(xí)冊(cè)答案