【題目】拋擲紅、藍兩顆骰子,當(dāng)已知紅色骰子的點數(shù)為偶數(shù)時,兩顆骰子的點數(shù)之和不小于9的概率是( 。

A. B. C. D.

【答案】C

【解析】

利用列舉法求出當(dāng)紅色骰子的點數(shù)為偶數(shù)時,有18種,其中兩棵骰子點數(shù)之和不小于9的有6種,由此能求出當(dāng)已知紅色骰子的點數(shù)為偶數(shù)時,兩顆骰子的點數(shù)之和不小于9的概率.

拋擲紅、藍兩枚骰子,第一個數(shù)字代表紅色骰子,第二個數(shù)字代表藍色骰子,

當(dāng)紅色骰子的點數(shù)為偶數(shù)時,有18種,分別為:

(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),

(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),

其中兩棵骰子點數(shù)之和不小于9的有6種,分別為:

(4,5),(4,6),(6,3),(6,4),(6,5),(6,6),

∴當(dāng)已知紅色骰子的點數(shù)為偶數(shù)時,兩顆骰子的點數(shù)之和不小于9的概率是P=

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長均相等的正四棱錐中, 為底面正方形的重心, 分別為側(cè)棱的中點,有下列結(jié)論:

平面;②平面平面;③;

④直線與直線所成角的大小為.

其中正確結(jié)論的序號是__________.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=12,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點到準線距離為.

(1)若點,且點在拋物線上,求的最小值;

(2)若過點的直線與圓相切,且與拋物線有兩個不同交點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的方程為,若拋物線過點,且以圓0的切線為準線,為拋物線的焦點,點的軌跡為曲線.

(1)求曲線的方程;

(2)過點作直線交曲線兩點,關(guān)于軸對稱,請問:直線是否過軸上的定點,如果不過請說明理由,如果過定點,請求出定點的坐標

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A,B,C所對的邊分別為a,b,c且ccosA=4,asinC=5.

(1)求邊長c;

(2)著△ABC的面積S=20.求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在x軸上,短軸長為,離心率為

求橢圓C的方程;

若過點的直線與橢圓C交于A,B兩點,且P點平分線段AB,求直線AB的方程;

一條動直線l與橢圓C交于不同兩點MN,O為坐標原點,的面積為求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a是實數(shù),函數(shù)

1)若,求a的值及曲線在點處的切線方程;

2)討論函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺舉行文藝比賽,并通過網(wǎng)絡(luò)對比賽進行直播.比賽現(xiàn)場有5名專家評委給每位參賽選手評分,場外觀眾可以通過網(wǎng)絡(luò)給每位參賽選手評分.每位選手的最終得分由專家評分和觀眾評分確定.某選手參與比賽后,現(xiàn)場專家評分情況如表;場外有數(shù)萬名觀眾參與評分,將評分按照[7,8),[8,9),[9,10]分組,繪成頻率分布直方圖如圖:

專家

A

B

C

D

E

評分

9.6

9.5

9.6

8.9

9.7

(1)求a的值,并用頻率估計概率,估計某場外觀眾評分不小于9的概率;

(2)從5名專家中隨機選取3人,X表示評分不小于9分的人數(shù);從場外觀眾中隨機選取3人,用頻率估計概率,Y表示評分不小于9分的人數(shù);試求E(X)與E(Y)的值;

(3)考慮以下兩種方案來確定該選手的最終得分:方案一:用所有專家與觀眾的評分的平均數(shù)作為該選手的最終得分,方案二:分別計算專家評分的平均數(shù)和觀眾評分的平均數(shù),用作為該選手最終得分.請直接寫出的大小關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案