【題目】第屆世界杯足球賽在俄羅斯進(jìn)行,某校足球協(xié)會(huì)為了解該校學(xué)生對(duì)此次足球盛會(huì)的關(guān)注情況,隨機(jī)調(diào)查了該校名學(xué)生,并將這名學(xué)生分為對(duì)世界杯足球賽“非常關(guān)注”與“一般關(guān)注”兩類(lèi),已知這名學(xué)生中男生比女生多人,對(duì)世界杯足球賽“非常關(guān)注”的學(xué)生中男生人數(shù)與女生人數(shù)之比為,對(duì)世界杯足球賽“一般關(guān)注”的學(xué)生中男生比女生少人.
(1)根據(jù)題意建立列聯(lián)表,判斷是否有的把握認(rèn)為男生與女生對(duì)世界杯足球賽的關(guān)注有差異?
(2)該校足球協(xié)會(huì)從對(duì)世界杯足球賽“非常關(guān)注”的學(xué)生中根據(jù)性別進(jìn)行分層抽樣,從中抽取人,再?gòu)倪@人中隨機(jī)選出人參與世界杯足球賽宣傳活動(dòng),求這人中至少有一個(gè)男生的概率.
附:,.
【答案】(1) 沒(méi)有的把握認(rèn)為男生與女生對(duì)世界杯足球賽的關(guān)注有差異(2)
【解析】分析:(1)根據(jù)題中的條件,得到相關(guān)的數(shù)據(jù),從而列出列聯(lián)表,根據(jù)公式求出的值,與臨界值比較,即可得出結(jié)論;
(2)根據(jù)比例,即可確定男生和女生抽取的人數(shù),確定所有基本事件、滿足條件的基本事件,即可求出至少有一個(gè)男生的概率.
詳解:(1)可得列聯(lián)表為:
非常關(guān)注 | 一般關(guān)注 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
,所以沒(méi)有把握認(rèn)為男生與女生對(duì)世界杯足球賽的關(guān)注有差異.
(2)由題意得男生抽人,女生人,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(I)已知函數(shù)f(x)=rx﹣xr+(1﹣r)(x>0),其中r為有理數(shù),且0<r<1.
(1)求f(x)的最小值;
(2)試用(1)的結(jié)果證明如下命題:設(shè)a1≥0,a2≥0,b1 , b2為正有理數(shù),若b1+b2=1,則a1b1a2b2≤a1b1+a2b2;
(3)請(qǐng)將(2)中的命題推廣到一般形式,并用數(shù)學(xué)歸納法證明你所推廣的命題.注:當(dāng)α為正有理數(shù)時(shí),有求導(dǎo)公式(xα)r=αxα﹣1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面命題中,正確的命題有( )
①若n1,n2分別是不同平面α,β的法向量,則n1∥n2α∥β;
②若n1,n2分別是平面α,β的法向量,則α⊥βn1·n2=0;
③若n是平面α的法向量,b,c是α內(nèi)兩個(gè)不共線的向量,a=λb+μc(λ,μ∈R),則n·a=0;
④若兩個(gè)平面的法向量不垂直,則這兩個(gè)平面一定不垂直.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①若函數(shù)在區(qū)間上單調(diào)遞增,則;
②若 (且),則的取值范圍是;
③若函數(shù),則對(duì)任意的,都有;
④若 (且),在區(qū)間上單調(diào)遞減,則.
其中所有正確命題的序號(hào)是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)在區(qū)間上的最小值記為.
(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的值域;
(2)求的函數(shù)表達(dá)式;
(3)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形,E,F(xiàn)分別是AB,PD的中點(diǎn),若PA=AD=3,CD=
①求證:AF∥平面PCE
②求證:平面PCE⊥平面PCD
③求直線FC與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)請(qǐng)?jiān)谒o的平面直角坐標(biāo)系中畫(huà)出函數(shù)的圖象;
(2)根據(jù)函數(shù)的圖象回答下列問(wèn)題:①求函數(shù)的單調(diào)區(qū)間;
②求函數(shù)的值域;③求關(guān)于的方程在區(qū)間上解的個(gè)數(shù).(回答上述3個(gè)小題都只需直接寫(xiě)出結(jié)果,不需給出演算步驟)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù);
(2)設(shè)函數(shù),其中a∈(1,2),求函數(shù)g(x)在區(qū)間[1,e]上的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com