【題目】孝感市旅游局為了了解雙峰山景點在大眾中的熟知度,從年齡在1565歲的人群中隨機抽取人進行問卷調查,把這人按年齡分成5組:第一組,第二組,第三組,第四組,第五組,得到的樣本的頻率分布直方圖如圖:

調查問題是雙峰山國家森林公園是幾級旅游景點?每組中回答正確的人數(shù)及回答正確的人數(shù)占本組的頻率的統(tǒng)計結果如下表.

1)分別求出的值;

2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人;

3)在(2)抽取的6人中隨機抽取2人,求所抽取的兩人來自不同年齡組的概率.

【答案】1,;(22,31;(3.

【解析】

1)由頻率表中第1組數(shù)據(jù)得到第1組總人數(shù)為,再結合頻率分布直方圖得到,進而得到;

2)根據(jù)第23,4組回答正確的共有54人和各組人數(shù),利用分層抽樣的方法得到各組應抽取的人數(shù).

3)由(2)的結果,設第2組的2人為;第3組的3人為;第4組的1人為.列舉出從6人中隨機抽取2人的所有可能的結果的種數(shù),再找出所抽取的兩人來自不同組的結果的種數(shù),代入古典概型的概率公式求解.

1)由頻率表中第1組數(shù)據(jù)可知,第1組總人數(shù)為

再結合頻率分布直方圖可知,

所以

;

2)因為第2,3,4組回答正確的共有54人,

所以利用分層抽樣在54人中抽取6人,每組分別抽取的人數(shù)為:

2組:;第3組:;第4組:.

3)設第2組的2人為;第3組的3人為;第4組的1人為.

則從6人中隨機抽取2人的所有可能的結果為:

,,,,,,,,,共15種,

其中所抽取的兩人來自不同組的結果為:

,,,,,,,,,共11種,

所以所抽取的兩人來自不同年齡組概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,直線.

(1)若拋物線和直線沒有公共點,求的取值范圍;

(2)若,且拋物線和直線只有一個公共點時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級有400名學生參加某項體育測試,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:,整理得到如下頻率分布直方圖:

1)若該樣本中男生有55人,試估計該學校高三年級女生總人數(shù);

2)若規(guī)定小于60分為“不及格”,從該學校高三年級學生中隨機抽取一人,估計該學生不及格的概率;

3)若規(guī)定分數(shù)在為“良好”,為“優(yōu)秀”.用頻率估計概率,從該校高三年級隨機抽取三人,記該項測試分數(shù)為“良好”或“優(yōu)秀”的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)的圖象向左平移1個單位后關于y軸對稱,當x2x11時,[fx2)﹣fx1]x2x1)<0恒成立,設af),bf2),cf3),則a、bc的大小關系為( 。

A.cabB.cbaC.acbD.bac

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足.

(1)求函數(shù)f(x)g(x)的表達式;

(2)時,不等式恒成立,求實數(shù)a的取值范圍;

(3)若方程上恰有一個實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為奇函數(shù),,其中.

1)若函數(shù)的圖像過點,求實數(shù)的值;

2)若,試判斷函數(shù)上的單調性并證明;

3)設函數(shù),若對每一個不小于3的實數(shù),都恰有一個小于3的實數(shù),使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的參數(shù)方程為為參數(shù)),以直角坐標系的原點o為極點,x軸的正半軸為極軸,建立極坐標系,直線l的極坐標方程是:

(Ⅰ)求曲線C的普通方程和直線l的直角坐標方程:

(Ⅱ)點P是曲線C上的動點,求點P到直線l距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,,,分別為的中點.

1)證明:平面;

2)已知與平面所成的角為30°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)在點P(1,)處的切線方程;

(2)若關于x的不等式有且僅有三個整數(shù)解,求實數(shù)t的取值范圍

(3)存在兩個正實數(shù),滿足,求證

查看答案和解析>>

同步練習冊答案