【題目】已知函數(shù),若關(guān)于的方程恰有三個不相等的實數(shù)解,則的取值范圍是  

A. B.

C. D.

【答案】B

【解析】

設(shè),則的圖象沿著上下平移得到,分析函數(shù)的圖象,利用圖象關(guān)系確定兩個函數(shù)滿足的條件進行求解即可.

設(shè),

的圖象沿著上下平移得到,

x=1時,11,

所以直線x=1與函數(shù)h(x)的圖像的交點坐標為(1,m,

x=1時,g(1)=0,

x=2時,2,所以直線x=2與函數(shù)g(x)的圖像的交點為(2,-2),

x=2時,2,所以直線x=2與函數(shù)h(x)的圖像的交點為(2,ln2+m,

要使方程恰有三個不相等的實數(shù)解,

則等價為的圖象有三個不同的交點,

則滿足,

,

即實數(shù)的取值范圍是,

故選:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知長方形中, 的中點,將沿折起,使得平面平面.

(1)求證:

(2)設(shè),當為何值時,二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】借助計算器填寫下表:

0

1

10

20

30

50

70

100

150

200

250

300

觀察表中的變化并歸納各函數(shù)遞增的規(guī)律:

1)一次函數(shù)與冪函數(shù)之間比較得出的規(guī)律;

2)冪函數(shù)與指數(shù)函數(shù)之間比較得出的規(guī)律;

3)指數(shù)函數(shù)之間比較得出的規(guī)律.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地居民用水采用階梯水價,其標準為:每戶每月用水量不超過15噸的部分,每噸3元;超過15噸但不超過25噸的部分,每噸4.5元;超過25噸的部分,每噸6.

(1)求某戶居民每月需交水費(元)關(guān)于用水量(噸)的函數(shù)關(guān)系式

(2)若戶居民某月交水費67.5元,求戶居民該月的用水量

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的 PK 賽,兩隊各由 4 名選手組成,每局兩隊各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設(shè)每局比賽A隊選手獲勝的概率均為,且各局比賽結(jié)果相互獨立,比賽結(jié)束時A隊的得分高于B隊的得分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)若不等式的解集為,求的取值范圍;

(2)當時,解不等式;

(3)若不等式的解集為,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓ab0)經(jīng)過點,且離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知A0,b),Ba,0),點P是橢圓C上位于第三象限的動點,直線AP、BP分別將x軸、y軸于點M、N,求證:|AN||BM|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠的,,三個不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進行檢測:

車間

數(shù)量

50

150

100

(1)求這6件樣品中來自,,各車間產(chǎn)品的數(shù)量;

(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件產(chǎn)品來自相同車間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)的圖象的兩相鄰對稱中心的距離為.

1)求的值;

2)將函數(shù)的圖象向右平移個單位長度后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習冊答案