【題目】如圖,已知長方形中, 的中點,將沿折起,使得平面平面.
(1)求證: ;
(2)設(shè),當為何值時,二面角的余弦值.
【答案】(1)見解析;(2) .
【解析】試題分析:(1)設(shè), 為的中點,得,進而得平面,即可得到.
(2)取的中點,以為坐標原點,建立如圖所示的直角坐標系,求得平面的一個法向量為和平面的一個法向量,即可利用向量的夾角公式,即得到二面角的余弦值.
試題解析:
(1)證明:因為長方形中,設(shè), 為的中點,
所以,所以,因為平面平面,
平面平面平面,
所以平面,因為平面,所以.
(2)取的中點,以為坐標原點,因為平面,
建立如圖所示的直角坐標系,則平面的一個法向量, ,
由,
設(shè)平面的一個法向量為,聯(lián)立,取,
得 ,所以,
因為,求得,所以為的中點,
故點時,二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】某小區(qū)要建一個八邊形的休閑區(qū),如圖所示,它的主要造型平面圖是由兩個相同的矩形和構(gòu)成的面積為的十字形區(qū)域.計劃在正方形上建一個花壇,造價為4200元/,在四個相同的矩形(圖中陰影部分)上鋪設(shè)花崗巖地面,造價為210元/,再在四個等腰直角三角形上鋪設(shè)草坪,造價為80元/.求當的長度為多少時,建設(shè)這個休閑區(qū)的總價最低.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)x=1與x=2是函數(shù)f(x)=aln x+bx2+x的兩個極值點.
(1)試確定常數(shù)a和b的值;
(2)判斷x=1,x=2是函數(shù)f(x)的極大值點還是極小值點,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】分層抽樣是將總體分成互不交叉的層,然后按照一定的比例,從各層獨立地抽取一定數(shù)量的個體,組成一個樣本的抽樣方法;在《九章算術(shù)》第三章“衰分”中有如下問題:“今有甲持錢五百六十,乙持錢三百五十,丙持錢一百八十,凡三人俱出關(guān),關(guān)稅百錢.欲以錢多少衰出之,問各幾何?”其譯文為:今有甲持560錢,乙持350錢,丙持180錢,甲、乙、丙三人一起出關(guān),關(guān)稅共100錢,要按照各人帶錢多少的比例進行交稅,問三人各應(yīng)付多少稅?則下列說法錯誤的是( )
A. 甲應(yīng)付錢 B. 乙應(yīng)付錢
C. 丙應(yīng)付錢 D. 三者中甲付的錢最多,丙付的錢最少
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)寫出命題“兩個有理數(shù)的和是有理數(shù)”的逆命題、否命題、逆否命題;
(2)判斷上述四個命題的真假,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年2月25日第23屆冬季奧運會在韓國平昌閉幕,中國以1金6銀2銅的成績結(jié)束本次冬奧會的征程.某校體育愛好者協(xié)會在高三年級某班進行了“本屆冬奧會中國隊表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),按分層抽樣從被調(diào)查的學生中隨機抽取了11人,具體的調(diào)查結(jié)果如下表:
某班 | 滿意 | 不滿意 |
男生 | 2 | 3 |
女生 | 4 | 2 |
(Ⅰ)若該班女生人數(shù)比男生人數(shù)多4人,求該班男生人數(shù)和女生人數(shù)
(Ⅱ)在該班全體學生中隨機抽取一名學生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;
(Ⅲ)若從該班調(diào)查對象中隨機選取2人進行追蹤調(diào)查,記選中的2人中對“本屆冬奧會中國隊表現(xiàn)”滿意的人數(shù)為,求隨機變量的分布列及其數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC,F為CE上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;
(2)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com