【題目】已知,,.

(Ⅰ)若,求的極值;

(Ⅱ)若函數(shù)的兩個零點為,記,證明:

【答案】(Ⅰ)極大值為無極小值;證明見解析.

【解析】分析:(Ⅰ)先判斷函數(shù)上的單調(diào)性,然后可得當(dāng)時,有極大值,無極小值.不妨設(shè),由題意可得,,又由條件得,構(gòu)造,令,則,利用導(dǎo)數(shù)可得,故得,所以

詳解:(Ⅰ),

,

,

且當(dāng)時,,即上單調(diào)遞增,

當(dāng)時,,即上單調(diào)遞減,

∴當(dāng)時,有極大值,且無極小值.

(Ⅱ)函數(shù)的兩個零點為,不妨設(shè),

,

,

,則

上單調(diào)遞減,

,

,

,

點睛:(1)研究方程根的情況,可以通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最大(小)值、函數(shù)的變化趨勢等根據(jù)題目要求,畫出函數(shù)圖象的大體圖象,然后通過數(shù)形結(jié)合的思想去分析問題可以使得問題的求解有一個清晰、直觀的整體展現(xiàn)

(2)證明不等式時常采取構(gòu)造函數(shù)的方法,然后通過判斷函數(shù)的單調(diào)性,借助函數(shù)的最值進行證明

型】解答
結(jié)束】
22

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),.以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為:

(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;

Ⅱ)設(shè)直線與曲線交于不同的兩點,,的值.

【答案】(Ⅰ);.

【解析】分析:(Ⅰ)將參數(shù)方程消去參數(shù)可得普通方程,由,得,根據(jù)轉(zhuǎn)化公式可得直角坐標(biāo)方程.將直線的參數(shù)方程代入曲線C的直角坐標(biāo)方程整理得二次方程,然后根據(jù)根與系數(shù)的關(guān)系及參數(shù)方程中參數(shù)的幾何意義求得弦長,進而可得

詳解:(Ⅰ)將為參數(shù),消去參數(shù),整理得,

∴直線普通方程為

,

代入上式,得

∴曲線的普通方程為

(Ⅱ)將為參數(shù),)代入方程整理得:

,

顯然

設(shè)兩點對應(yīng)的參數(shù)分別為

,

,

解得

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有7個球,其中4個白球,3個紅球,從袋中任意取出2個球,求下列事件的概率:

(1) 取出的2個球都是白球;

(2)取出的2個球中1個是白球,另1個是紅球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)當(dāng)時,求的圖象在處的切線方程;

(Ⅱ)若函數(shù)有兩個不同零點, ,且,求證: ,其中的導(dǎo)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值;

2)當(dāng)時,證明:;

3)設(shè)函數(shù)的圖象與直線的兩個交點分別為,,的中點的橫坐標(biāo)為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C:(a>b>0)的左、右焦點分別為,離心率為,過焦點且垂直于x軸的直線被橢圓C截得的線段長為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點M(0,-1),直線l經(jīng)過點N(2,1)且與橢圓C相交于A,B兩點(異于點M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求的零點個數(shù);

2)若,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面側(cè)面,,,,為棱的中點,在棱上,.

(1)求證:的中點;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個極值點,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 直線與拋物線交于兩點, 線段的垂直平分線與直線交于點.

(1)求點的坐標(biāo);

(2)當(dāng)P為拋物線上位于線段下方(含)的動點時, 求ΔOPQ面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案