相關(guān)習題
 0  263808  263816  263822  263826  263832  263834  263838  263844  263846  263852  263858  263862  263864  263868  263874  263876  263882  263886  263888  263892  263894  263898  263900  263902  263903  263904  263906  263907  263908  263910  263912  263916  263918  263922  263924  263928  263934  263936  263942  263946  263948  263952  263958  263964  263966  263972  263976  263978  263984  263988  263994  264002  266669 

科目: 來源: 題型:

【題目】已知常數(shù),數(shù)列的前項和為, , ;

(1)求數(shù)列的通項公式;

(2)若,且是單調(diào)遞增數(shù)列,求實數(shù)的取值范圍;

(3)若, ,對于任意給定的正整數(shù),是否存在正整數(shù)、,使得?若存在,求出、的值(只要寫出一組即可);若不存在,請說明理由;

查看答案和解析>>

科目: 來源: 題型:

【題目】無窮等差數(shù)列的各項均為整數(shù),首項為,公差為,是其前項和,31521是其中的三項 ,給出下列命題:

①對任意滿足條件的,存在,使得99一定是數(shù)列中的一項;

②對任意滿足條件的,存在,使得30一定是數(shù)列中的一項;

③存在滿足條件的數(shù)列,使得對任意的,成立;

其中正確命題的序號為( ).

A.B.②③C.①③D.①②③

查看答案和解析>>

科目: 來源: 題型:

【題目】己知橢圓: 上動點PQ,O為原點;

(1)若,求證:為定值;

(2)點,若,求證:直線過定點;

(3)若,求證:直線為定圓的切線;

查看答案和解析>>

科目: 來源: 題型:

【題目】兩圓(圓心,半徑),與(圓心,半徑)不是同心圓,方程相減(消去二次項)得到的直線叫做圓 與圓的根軸;

(1)求證:當相交于A,B兩點時,所在直線為根軸;

(2)對根軸上任意點P,求證:;

(3)設(shè)根軸交于點H,,求證:H的比;

查看答案和解析>>

科目: 來源: 題型:

【題目】已知雙曲線1(a0b0)的左、右焦點分別為F1F2,點O為雙曲線的中心,點P在雙曲線右支上,PF1F2內(nèi)切圓的圓心為Q,圓Qx軸相切于點A,過F2作直線PQ的垂線,垂足為B,則下列結(jié)論成立的是( )

A. |OA||OB|B. |OA||OB|

C. |OA||OB|D. |OA||OB|大小關(guān)系不確定

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C)的離心率,左、右焦點分別為,過右焦點任作一條不垂直于坐標軸的直線l與橢圓C交于A,B兩點,的周長為.

1)求橢圓C的方程;

2)記點B關(guān)于x軸的對稱點為點,直線x軸于點D.的面積的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為矩形,O,E分別為ADPB的中點,平面平面ABCD,.

1)求證:平面PCD;

2)求證:平面PCD;

3)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點Q是圓上的動點,點,若線段QN的垂直平分線MQ于點P.

(I)求動點P的軌跡E的方程

(II)若A是軌跡E的左頂點,過點D(-3,8)的直線l與軌跡E交于BC兩點,求證:直線AB、AC的斜率之和為定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某消費品企業(yè)銷售部對去年各銷售地的居民年收入(即此地所有居民在一年內(nèi)的收入的總和)及其產(chǎn)品銷售額進行抽樣分析,收集數(shù)據(jù)整理如下:

銷售地

A

B

C

D

年收入x(億元)

15

20

35

50

銷售額y(萬元)

16

20

40

48

1)在圖a中作出這些數(shù)據(jù)的散點圖,并指出yx成正相關(guān)還是負相關(guān)?

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程?

3)若B地今年的居民年收入將增長20%,預測B地今年的銷售額將達到多少萬元?

回歸方程系數(shù)公式:.

參考數(shù)據(jù):,.

查看答案和解析>>

科目: 來源: 題型:

【題目】隨著高考制度的改革,某省即將實施“語數(shù)外+3”新高考的方案,2019年秋季入學的高一新生將面臨從物理(物)、化學(化)、生物(生)、政治(政)、歷史(歷)、地理(地)六科中任選三科(共20種選法)作為自己將來高考“語數(shù)外+3”新高考方案中的“3”某市為了順利地迎接新高考改革,在某高中200名學生中進行了“學生模擬選科數(shù)據(jù)”調(diào)查,每個學生只能從表格中的20種課程組合中選擇一種學習模擬選課數(shù)據(jù)統(tǒng)計如下表:

序號

1

2

3

4

5

6

7

8

9

10

組合學科

物化生

物化政

物化歷

物化地

物生政

物生歷

物生地

物政歷

物政地

物歷地

人數(shù)

20人

5人

10人

10人

5人

15人

10人

5人

0人

5人

11

12

13

14

15

16

17

18

19

20

合計

化生政

化生歷

化生地

化政歷

化政地

化歷地

生政歷

生政地

生歷地

政歷地

5人

10人

5人

25人

200人

為了解學生成績與學生模擬選課情況之問的關(guān)系,用分層抽樣的方法從這200名學生中抽取40人的樣本進行分析

(l)樣本中選擇組合20號“政歷地”的有多少人?若以樣本頻率作為概率,求該高中學生不選物理學科的概率?

(Ⅱ)從樣本中選擇學習生物且學習政治的學生中隨機抽取3人,求這3人中至少有一人還學習歷史的概率?

查看答案和解析>>

同步練習冊答案