科目: 來源: 題型:
【題目】已知衡量病毒傳播能力的最重要指標叫做傳播指數(shù)RO.它指的是,在自然情況下(沒有外力介入,同時所有人都沒有免疫力),一個感染到某種傳染病的人,會把疾病傳染給多少人的平均數(shù).它的簡單計算公式是:確認病例增長率系列間隔,其中系列間隔是指在一個傳播鏈中,兩例連續(xù)病例的間隔時間(單位:天).根據(jù)統(tǒng)計,確認病例的平均增長率為,兩例連續(xù)病例的間隔時間的平均數(shù)為天,根據(jù)以上RO數(shù)據(jù)計算,若甲得這種傳染病,則輪傳播后由甲引起的得病的總?cè)藬?shù)約為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱坐標伸長到原來的倍(橫坐標不變),得到曲線.以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)寫出曲線的極坐標方程與直線的直角坐標方程;
(2)曲線上是否存在不同的兩點,(以上兩點坐標均為極坐標,,,,),使點、到的距離都為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的焦點為,拋物線上的點到準線的最小距離為.
(1)求拋物線的方程;
(2)若過點作互相垂直的兩條直線、,與拋物線交于兩點,與拋物線交于兩點,分別為弦的中點,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了釋放學生壓力,某校高三年級一班進行了一個投籃游戲,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪).在相同的條件下,每輪甲乙兩人站在同一位置上,甲先投,每人投一次籃,兩人有人命中,命中者得分,未命中者得分;兩人都命中或都未命中,兩人均得分.設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響.
(1)經(jīng)過輪投籃,記甲的得分為,求的分布列及期望;
(2)若經(jīng)過輪投籃,用表示第輪投籃后,甲的累計得分低于乙的累計得分的概率.
①求;
②規(guī)定,經(jīng)過計算機模擬計算可得,請根據(jù)①中值求出的值,并由此求出數(shù)列的通項公式.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)和函數(shù),關(guān)于這兩個函數(shù)圖像的交點個數(shù),下列四個結(jié)論:①當時,兩個函數(shù)圖像沒有交點;②當時,兩個函數(shù)圖像恰有三個交點;③當時,兩個函數(shù)圖像恰有兩個交點;④當時,兩個函數(shù)圖像恰有四個交點.正確結(jié)論的個數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值.
(2),若不等式在上恒成立,求的最大值.
(3)是否存在實數(shù),使得函數(shù)在上的值域為?如果存在,請給出證明;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓過橢圓的左、右焦點和短軸的端點(點在點上方).為圓上的動點(點不與重合),直線分別與橢圓交于點,其中點構(gòu)成四邊形.
(1)求橢圓的標準方程;
(2)求四邊形面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在中,分別為的中點,為的一個三等分點(靠近點).將沿折起,記折起后點為,連接為上的一點,且,連接.
(1)求證:平面;
(2)若,直線與平面所成的角為,當最大時,求,并計算.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com