科目: 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥側面BCC1B1,AC=AB1.
(1)求證:平面ABC1⊥平面AB1C;
(2)若AB=BC=2,∠BCC1=60°,求二面角B﹣AC1﹣B1的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的A,B處設置觀景臺,記BC=a,AC=b,AB=c(單位:百米)
(1)若a,b,c成等差數(shù)列,且公差為4,求b的值;
(2)已知AB=12,記∠ABC=θ,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知橢圓E經(jīng)過點,對稱軸為坐標軸,焦點,在x軸上,離心率e.直線l是的平分線,則橢圓E的方程是_____,l所在的直線方程是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】在等比數(shù)列中,已知設數(shù)列的前n項和為,且
(1)求數(shù)列通項公式;
(2)證明:數(shù)列是等差數(shù)列;
(3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知橢圓過點,離心率為,分別是橢圓的左、右頂點,過右焦點且斜率為的直線與橢圓相交于兩點.
(1)求橢圓的標準方程;
(2)記、的面積分別為、,若,求的值;
(3)記直線、的斜率分別為、,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某植物園內有一塊圓形區(qū)域,在其內接四邊形內種植了兩種花卉,其中區(qū)域內種植蘭花,區(qū)域內種植丁香花,對角線BD是一條觀賞小道.測量可知邊界,, .
(1)求觀賞小道BD的長及種植區(qū)域的面積;
(2)因地理條件限制,種植丁香花的邊界BC,CD不能變更,而邊界AB,AD可以調整,使得種植蘭花的面積有所增加,請在BAD上設計一點P,使得種植區(qū)域改造后的新區(qū)域(四邊形)的面積最大,并求出這個面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:.
(1)曲線:與相交于,兩點,為上異于,的點,若直線的斜率為1,求直線的斜率;
(2)若的左焦點為,右頂點為,直線:.過的直線與相交于,(在第一象限)兩點,與相交于,是否存在使的面積等于的面積與的面積之和.若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)有某種不透明充氣包裝的袋裝零食,每袋零食附贈玩具A,B,C中的一個.對某零售店售出的100袋零食中附贈的玩具類型進行追蹤調查,得到以下數(shù)據(jù):
BBABC ACABA AAABC BABAA CAAAB
ABCCC BCBBC CABCA BACAB BCBCB
BCCCA BCCAA BCCCB ACCBB BACAB
ACCAB BBBAA CABCA BCBBC CABCA
(1)能否認為購買一袋該零食,獲得玩具A,B,C的概率相同?請說明理由;
(2)假設每袋零食隨機附贈玩具A,B,C是等可能的,某人一次性購買該零食3袋,求他能從這3袋零食中集齊玩具A,B及C的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com