科目: 來(lái)源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護(hù)意識(shí),高二年級(jí)準(zhǔn)備成立一個(gè)環(huán)境保護(hù)興趣小組.該年級(jí)理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護(hù)興趣小組,再?gòu)倪@10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識(shí)競(jìng)賽.
(1)設(shè)事件為“選出的這4個(gè)人中要求有兩個(gè)男生兩個(gè)女生,而且這兩個(gè)男生必須文、理科生都有”,求事件發(fā)生的概率;
(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)若實(shí)數(shù)為整數(shù),且對(duì)任意的時(shí),都有恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知雙曲線的焦點(diǎn)是橢圓: ()的頂點(diǎn),且橢圓與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)動(dòng)點(diǎn), 在橢圓上,且,記直線在軸上的截距為,求的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,已知拋物線E:y2=4x與圓M:(x3)2+y2=r2(r>0)相交于A,B,C,D四個(gè)點(diǎn).
(1)求r的取值范圍;
(2)設(shè)四邊形ABCD的面積為S,當(dāng)S最大時(shí),求直線AD與直線BC的交點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,已知拋物線E:y2=4x與圓M:(x3)2+y2=r2(r>0)相交于A,B,C,D四個(gè)點(diǎn).
(1)求r的取值范圍;
(2)設(shè)四邊形ABCD的面積為S,當(dāng)S最大時(shí),求直線AD與直線BC的交點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,射線的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為.一只小蟲(chóng)從點(diǎn)沿射線向上以單位/min的速度爬行
(1)以小蟲(chóng)爬行時(shí)間為參數(shù),寫出射線的參數(shù)方程;
(2)求小蟲(chóng)在曲線內(nèi)部逗留的時(shí)間.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】至年底,我國(guó)發(fā)明專利申請(qǐng)量已經(jīng)連續(xù)年位居世界首位,下表是我國(guó)年至年發(fā)明專利申請(qǐng)量以及相關(guān)數(shù)據(jù).
注:年份代碼~分別表示~.
(1)可以看出申請(qǐng)量每年都在增加,請(qǐng)問(wèn)這幾年中哪一年的增長(zhǎng)率達(dá)到最高,最高是多少?
(2)建立關(guān)于的回歸直線方程(精確到),并預(yù)測(cè)我國(guó)發(fā)明專利申請(qǐng)量突破萬(wàn)件的年份.
參考公式:回歸直線的斜率和截距的最小二乘法估計(jì)分別為,
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在我們的教材必修一中有這樣一個(gè)問(wèn)題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報(bào)如下:
方案一:每天回報(bào)元;
方案二:第一天回報(bào)元,以后每天比前一天多回報(bào)元;
方案三:第一天回報(bào)元,以后每天的回報(bào)比前一天翻一番.
記三種方案第天的回報(bào)分別為,,.
(1)根據(jù)數(shù)列的定義判斷數(shù)列,,的類型,并據(jù)此寫出三個(gè)數(shù)列的通項(xiàng)公式;
(2)小王準(zhǔn)備做一個(gè)為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,已知是圓的直徑,,在圓上且分別在的兩側(cè),其中,.現(xiàn)將其沿折起使得二面角為直二面角,則下列說(shuō)法不正確的是( )
A.,,,在同一個(gè)球面上
B.當(dāng)時(shí),三棱錐的體積為
C.與是異面直線且不垂直
D.存在一個(gè)位置,使得平面平面
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2+(1﹣2a)x﹣lnx(a∈R).
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a>0時(shí),證明f(x)≥ln(ae2)﹣2a(e為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com