相關(guān)習(xí)題
 0  265757  265765  265771  265775  265781  265783  265787  265793  265795  265801  265807  265811  265813  265817  265823  265825  265831  265835  265837  265841  265843  265847  265849  265851  265852  265853  265855  265856  265857  265859  265861  265865  265867  265871  265873  265877  265883  265885  265891  265895  265897  265901  265907  265913  265915  265921  265925  265927  265933  265937  265943  265951  266669 

科目: 來(lái)源: 題型:

【題目】28屆金雞百花電影節(jié)將在福建省廈門(mén)市舉辦,近日首批影展片單揭曉,《南方車站的聚會(huì)》《春江水暖》《第一次的離別》《春潮》《抵達(dá)之謎》五部?jī)?yōu)秀作品將在電影節(jié)進(jìn)行展映.若從這五部作品中隨機(jī)選擇兩部放在展映的前兩位,則《春潮》與《抵達(dá)之謎》至少有一部被選中的概率為 _____

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)零點(diǎn).

)求a的取值范圍;

)設(shè)x1,x2的兩個(gè)零點(diǎn),證明:.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知fx)=log4(4x+1)+kx是偶函數(shù).

(1)求k的值;

(2)判斷函數(shù)y=fx)-xR上的單調(diào)性,并加以證明;

(3)設(shè)gx)=log4a2x-a),若函數(shù)fx)與gx)的圖象有且僅有一個(gè)交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點(diǎn),且

1)求證:平面;

2)求二面角的余弦值;

3)設(shè)為棱上的點(diǎn)(不與,重合),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù),且存在不同的實(shí)數(shù)x1,x2x3,使得fx1=fx2=fx3),則x1x2x3的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax+blnx(a,bR)在點(diǎn)(1,f(1))處的切線方程為yx1.

(1)求ab的值;

(2)當(dāng)x>1時(shí),f(x)0恒成立,求實(shí)數(shù)k的取值范圍;

(3)設(shè)g(x)=exx,求證:對(duì)于x∈(0,+∞),g(x)﹣f(x)>2恒成立.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知橢圓C:l(a>b>0)經(jīng)過(guò)點(diǎn)(,1),且離心率e.

(1)求橢圓C的方程;

(2)若直線l與橢圓C相交于AB兩點(diǎn),且滿足∠AOB=90°(O為坐標(biāo)原點(diǎn)),求|AB|的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為直角梯形,BCAD,∠BAD=90°,BC=2,AD=3,四邊形ABEF為平行四邊形,AB=1,BE=2,∠EBA=60°,平面ABEF⊥平面ABCD.

(1)求證:AE⊥平面ABCD;

(2)求平面ABEF與平面FCD所成銳二面角的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某學(xué)校為了學(xué)生的健康,對(duì)課間操活動(dòng)做了如下規(guī)定:課間操時(shí)間若有霧霾則停止課間操,若無(wú)霧霾則組織課間操.預(yù)報(bào)得知,在未來(lái)一周從周一到周五的課間操時(shí)間出現(xiàn)霧霾的概率是:前3天均為,后2天均為,且每一天出現(xiàn)霧霾與否是相互獨(dú)立的.

(1)求未來(lái)5天至少一天停止課間操的概率;

(2)求未來(lái)5天組織課間操的天數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知

1)求處的切線方程以及的單調(diào)性;

2)對(duì),有恒成立,求的最大整數(shù)解;

3)令,若有兩個(gè)零點(diǎn)分別為的唯一的極值點(diǎn),求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案