科目: 來源: 題型:
【題目】已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.
(1)求橢圓E的標(biāo)準(zhǔn)方程,
(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】近幾年一種新奇水果深受廣大消費者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟(jì)效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:
x | 1 | 3 | 4 | 6 | 7 |
y | 5 | 6.5 | 7 | 7.5 | 8 |
y與x可用回歸方程 ( 其中,為常數(shù))進(jìn)行模擬.
(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價格為150元/箱,試預(yù)測該新奇水果100箱的利潤是多少元.|.
(Ⅱ)據(jù)統(tǒng)計,10月份的連續(xù)16天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.
(i)若從箱數(shù)在內(nèi)的天數(shù)中隨機(jī)抽取2天,估計恰有1天的水果箱數(shù)在內(nèi)的概率;
(ⅱ)求這16天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點值作代表)
參考數(shù)據(jù)與公式:設(shè),則
0.54 | 6.8 | 1.53 | 0.45 |
線性回歸直線中,,.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當(dāng)點C到平面ABE的距離最大時,該四棱錐的體積為( )
A.B.C.D.1
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),以下結(jié)論正確的個數(shù)為( )
①當(dāng)時,函數(shù)的圖象的對稱中心為;
②當(dāng)時,函數(shù)在上為單調(diào)遞減函數(shù);
③若函數(shù)在上不單調(diào),則;
④當(dāng)時,在上的最大值為15.
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】國家統(tǒng)計局服務(wù)業(yè)調(diào)查中心和中國物流與采購聯(lián)合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯誤的是( )
A.12個月的PMI值不低于50%的頻率為
B.12個月的PMI值的平均值低于50%
C.12個月的PMI值的眾數(shù)為49.4%
D.12個月的PMI值的中位數(shù)為50.3%
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)系中,O為極點,點在曲線上,直線l過點且與垂直,垂足為P.
(1)當(dāng)時,求及l的極坐標(biāo)方程;
(2)當(dāng)M在C上運動且P在線段OM上時,求P點軌跡的極坐標(biāo)方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機(jī)從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1)經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個,再從這6個中隨機(jī)抽取3個,求這3個芒果中恰有1個在內(nèi)的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:
A:所有芒果以10元/千克收購;
B:對質(zhì)量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左焦點為,是橢圓上關(guān)于原點對稱的兩個動點,當(dāng)點的坐標(biāo)為時,的周長恰為.
(1)求橢圓的方程;
(2)過點作直線交橢圓于兩點,且 ,求面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com