相關(guān)習(xí)題
 0  266534  266542  266548  266552  266558  266560  266564  266570  266572  266578  266584  266588  266590  266594  266600  266602  266608  266612  266614  266618  266620  266624  266626  266628  266629  266630  266632  266633  266634  266636  266638  266642  266644  266648  266650  266654  266660  266662  266668  266669 

科目: 來源: 題型:

【題目】已知拋物線.

1)若拋物線的焦點(diǎn)到準(zhǔn)線的距離為4,點(diǎn),在拋物線上,線段的中點(diǎn)為,求直線的方程;

2)若圓以原點(diǎn)為圓心,1為半徑,直線分別相切,切點(diǎn)分別為,,求的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,,平面平面是等邊三角形.

1)求證:;

2)若的面積為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知xy,z均為正數(shù).

1)若xy1,證明:|x+z||y+z|4xyz;

2)若,求2xy2yz2xz的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為m為參數(shù)),以坐標(biāo)點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθ+)=1

1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;

2)已知點(diǎn)M 2,0),若直線l與曲線C相交于P、Q兩點(diǎn),求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】2019年籃球世界杯在中國舉行,中國男籃由于主場作戰(zhàn)而備受觀眾矚目.為了調(diào)查國人對中國男籃能否進(jìn)入十六強(qiáng)持有的態(tài)度,調(diào)查人員隨機(jī)抽取了男性觀眾與女性觀眾各100名進(jìn)行調(diào)查,所得情況如下表所示:

男性觀眾

女性觀眾

認(rèn)為中國男籃能夠進(jìn)入十六強(qiáng)

60

認(rèn)為中國男籃不能進(jìn)入十六強(qiáng)

若在被抽查的200名觀眾中隨機(jī)抽取1人,抽到認(rèn)為中國男籃不能進(jìn)入十六強(qiáng)的女性觀眾的概率為.

1)完善上述表格;

2)是否有99%的把握認(rèn)為性別與對中國男籃能否進(jìn)入十六強(qiáng)持有的態(tài)度有關(guān)?

附:,其中.

查看答案和解析>>

科目: 來源: 題型:

【題目】《中央廣播電視總臺2019主持人大賽》是中央人民廣播電視總臺成立后推出的第一個電視大賽,由撒貝寧擔(dān)任主持人,康輝、董卿擔(dān)任點(diǎn)評嘉賓,敬一丹、魯健、朱迅、俞虹、李洪巖等17位擔(dān)任專業(yè)評審.20191026日起,每周六20:00在中央電視臺綜合頻道播出.某傳媒大學(xué)為了解大學(xué)生對主持人大賽的關(guān)注情況,分別在大一和大二兩個年級各隨機(jī)抽取了100名大學(xué)生進(jìn)行調(diào)查.下圖是根據(jù)調(diào)查結(jié)果繪制的學(xué)生場均關(guān)注比賽的時間頻率分布直方圖和頻數(shù)分布表,并將場均關(guān)注比賽的時間不低于80分鐘的學(xué)生稱為賽迷”.

大二學(xué)生場均關(guān)注比賽時間的頻數(shù)分布表

時間分組

頻數(shù)

12

20

24

22

16

6

1)將頻率視為概率,估計哪個年級的大學(xué)生是賽迷的概率大,請說明理由;

2)已知抽到的100名大一學(xué)生中有男生50名,其中10名為賽迷試完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為賽迷與性別有關(guān).

賽迷

賽迷

合計

合計

附:,其中.

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在等腰梯形中,兩腰,底邊的三等分點(diǎn),的中點(diǎn).分別沿將四邊形折起,使重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,分別為的中點(diǎn).

(1)證明:平面

(2)求幾何體的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知分別為橢圓的左、右焦點(diǎn),為該橢圓的一條垂直于軸的動弦,直線軸交于點(diǎn),直線與直線的交點(diǎn)為.

1)證明:點(diǎn)恒在橢圓.

2)設(shè)直線與橢圓只有一個公共點(diǎn),直線與直線相交于點(diǎn),在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】鳳梨穗龍眼原產(chǎn)廈門,是廈門市的名果,栽培歷史已有多年.龍眼干的級別按直徑的大小分為四個等級,其中直徑在區(qū)間為特級品,在的為一級品,在的為二級品,在的為三級品,某商家為了解某農(nóng)場一批龍眼干的質(zhì)量情況,隨機(jī)抽取了個龍眼干作為樣本(直徑分布在區(qū)間),統(tǒng)計得到這些龍眼干的直徑的頻數(shù)分布表如下:

頻數(shù)

1

29

7

用分層抽樣的方法從樣本的一級品和特級品中抽取個,其中一級品有.

1)求的值,并估計這些龍眼干中特級品的比例;

2)已知樣本中的個龍眼干約克,該農(nóng)場有千克龍眼干待出售,商家提出兩種收購方案:

方案A:以/千克收購;

方案B:以級別分裝收購,每袋個,特級品/袋、一級品/袋、二級品/袋、三級品/.用樣本的頻率分布估計總體分布,哪個方案農(nóng)場的收益更高?并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四邊形是邊長為2的菱形,,都垂直于平面,且.

1)證明:平面;

2)若,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案