2009年四川高考預(yù)測卷數(shù)學(xué)
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分。第Ⅰ卷1至2頁。第Ⅱ卷3到6頁?荚嚱Y(jié)束后,將本試卷和答題卡一并交回。
第Ⅰ卷
注意事項(xiàng):
1.答第Ⅰ卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考試科目涂寫在答題卡上。
2.每小題選出答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑。如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。不能答在試題卷上。
3.本卷共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
參考公式:
如果事件A、B互斥,那么 球是表面積公式
如果事件A、B相互獨(dú)立,那么 其中R表示球的半徑
球的體積公式
如果事件A在一次試驗(yàn)中發(fā)生的概率是P,那么
n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率 其中R表示球的半徑
一.選擇題:
(1)(理)已知復(fù)數(shù)滿足,則( )
A. B. C. D.
(文)函數(shù)的定義域?yàn)椋ā 。?/p>
A. B. C. D.
(2)已知函數(shù)的反函數(shù)為,函數(shù)的反函數(shù)為,則函數(shù)與的圖象關(guān)系是( )
A、將函數(shù)的圖象向右平移1個單位可得到函數(shù)的圖象
B、將函數(shù)的圖象向左平移1個單位可得到函數(shù)的圖象
C、將函數(shù)的圖象向上平移1個單位可得到函數(shù)的圖象
D、將函數(shù)的圖象向下平移1個單位可得到函數(shù)的圖象
(3)(理)已知,則( )
A、 B、 C、 D、
(文)某地區(qū)有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家.為了掌握各商店的營業(yè)情況,要從中抽取一個容量為20的樣本.若采用分層抽樣的方法,抽取的中型商店數(shù)是( )
(A)2 (B)3 (C)5 (D)13
(4)給出下列四個命題:
①垂直于同一直線的兩條直線互相平行.
②垂直于同一平面的兩個平面互相平行.
③若直線與同一平面所成的角相等,則互相平行.
④若直線是異面直線,則與都相交的兩條直線是異面直線.
其中假命題的個數(shù)是( ) A、1 B、
(5)設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值為( )
A.2 B.
(6)(理)已知雙曲線的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為的直線與雙曲線的右支有且只有一個交點(diǎn),則此雙曲線離心率的取值范圍是( )
(A) 。˙) 。–) 。―)
(文)一袋中裝有大小相同,編號分別為的八個球,從中有放回地每次取一個球,共取2次,則取得兩個球的編號和不小于15的概率為( )
A. B. C. D.
(7)頂點(diǎn)在同一球面上的正四棱柱中,,則、兩點(diǎn)間的球面距離為( )
A. B. C. D.
(8)的三內(nèi)角A、B、C的對邊的長分別為、、,設(shè)向量 若則角的大小為( 。
A. B. C. D.
(9)在正方體中,、分別為棱、的中點(diǎn),則在空間中與三條直線、、都相交的直線( )
A、不存在 B、有且只有兩條 C、有且只有三條 D、有無數(shù)條
(10)如圖所示,“嫦娥一號”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近
一點(diǎn)P變軌進(jìn)入以月球球心F為一個焦點(diǎn)的橢圓軌道I繞月飛行,之后衛(wèi)星
在P點(diǎn)第二次變軌進(jìn)入仍以F為一個焦點(diǎn)的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星
在P點(diǎn)第三次變軌進(jìn)入以F為圓形軌道Ⅲ繞月飛行,若用和分別表
示橢圓軌道I和Ⅱ的焦距,用和分別表示橢圓軌道I和Ⅱ的長軸的長,
給出下列式子:
① ② ③ ④
其中正確式子的序號是( )
A.①③ B.②③ C.①④ D.②④
(11)已知對任意實(shí)數(shù),有,且時,,則時( )
A. B.
C. D.
(12)(理)已知直線(是非零常數(shù))與圓有公共點(diǎn),且公共點(diǎn)的橫坐標(biāo)和縱坐標(biāo)均為整數(shù),那么這樣的直線共有( )
A.60條 B.66條 C.72條 D.78條
(文)設(shè)橢圓的離心率為,右焦點(diǎn)為,方程的
兩個實(shí)根分別為和,則點(diǎn)( )
A.必在圓上 B.必在圓外
C.必在圓內(nèi) D.以上三種情形都有可能
第Ⅱ卷
二、填空題:本大題共4小題,每小題4分,共16分,把答案填在橫線上.
(13)若對于任意實(shí)數(shù),有,則的值為
________________________.
(14)已知,且在區(qū)間有最小值,無最大值,
則_____________.
(15) 在等比數(shù)列中,若則
=__________________.
(16)定義在上的函數(shù),若對任意不等實(shí)數(shù)滿足,且對于任意的,不等式成立.又函數(shù)的圖象關(guān)于點(diǎn)對稱,則當(dāng) 時,的取值范圍為__________________.
三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟.
(17)(本小題滿分12分)已知函數(shù)
⑴ 求f(x)的最小正周期;
⑵ 求f(x)的單調(diào)遞減區(qū)間;
⑶ 函數(shù)f(x)的圖象經(jīng)過怎樣的平移才能使其對應(yīng)的函數(shù)成為奇函數(shù)?
(18)(本小題滿分12分)(文)平面上有兩個質(zhì)點(diǎn)、分別位于、,在某一時刻同時開始每隔1秒鐘向上、下、左、右四個方向中的任何一個方向移動1個單位.已知質(zhì)點(diǎn)向左、右移動的概率都是,向上、下移動的概率分別是和,質(zhì)點(diǎn)向四個方向移動的概率都是.
(1)求和的值;
(2)試判斷最少需要幾秒鐘,、能同時到達(dá)點(diǎn)?并求在最短時間內(nèi)同時到達(dá)的概率.
(理)現(xiàn)有甲、乙兩個項(xiàng)目,對甲項(xiàng)目每投資十萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為、、;已知乙項(xiàng)目的利潤與產(chǎn)品價格的調(diào)整有關(guān),在每次調(diào)整中價格下降的概率都是,設(shè)乙項(xiàng)目產(chǎn)品價格在一年內(nèi)進(jìn)行2次獨(dú)立的調(diào)整,記乙項(xiàng)目產(chǎn)品價格在一年內(nèi)的下降次數(shù)為,對乙項(xiàng)目每投資十萬元,取0、1、2時,一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機(jī)變量、分別表示對甲、乙兩項(xiàng)目各投資十萬元一年后的利潤.
(Ⅰ)求、的概率分布和數(shù)學(xué)期望、;
(Ⅱ)當(dāng)時,求的取值范圍.
(19)(本小題滿分12分)如圖,直三棱柱中,,是的中點(diǎn),是側(cè)棱上的一個動點(diǎn).
(1)當(dāng)是的中點(diǎn)時,證明:平面;
(2)在棱上是否存在點(diǎn)滿足,使二面角是直二面角?若存在,求出的值;若不存在,說明理由.
(20)設(shè)數(shù)列前項(xiàng)和為,且.其中為實(shí)常數(shù), 且.
(1)求證:是等比數(shù)列;
(2)若數(shù)列的公比滿足且,求的通項(xiàng)公式;
(3)若時,設(shè),是否存在最大的正整數(shù),使得對任意均有成立,若存在求出的值,若不存在請說明理由.
(21)(本小題滿分12分)
(文)設(shè)函數(shù),已知
(Ⅰ)求a和b的值;
(Ⅱ)討論的單調(diào)性;
(Ⅲ)設(shè),試比較與的大小.
(理)已知函數(shù)(為自然對數(shù)的底數(shù)),(為常數(shù)),是實(shí)數(shù)集上的奇函數(shù).
(1)求證:;
(2)討論關(guān)于的方程:的根的個數(shù);
(提示:)
(3)設(shè),證明:(為自然對數(shù)的底數(shù)).
(22)(本小題滿分14分)
(文)設(shè)動點(diǎn)到點(diǎn)和的距離分別為和,,且存在常數(shù),使得.
(1)證明:動點(diǎn)的軌跡為雙曲線,并求出的方程;
(2)如圖,過點(diǎn)的直線與雙曲線的右支交于
兩點(diǎn).問:是否存在,使是以點(diǎn)為直角
頂點(diǎn)的等腰直角三角形?若存在,求出的值;若不
存在,說明理由.
(理)我們把由半橢圓 與半橢圓 合成的曲線稱作“果圓”,其中,,.
如圖,點(diǎn),,是相應(yīng)橢圓的焦點(diǎn),,和
,分別是“果圓”與,軸的交點(diǎn).
(1)若是邊長為1的等邊三角形,
求“果圓”的方程;
(2)當(dāng)時,求的取值范圍;
(3)連接“果圓”上任意兩點(diǎn)的線段稱為“果圓”
的弦.試研究:是否存在實(shí)數(shù),使斜率為的“果圓”平行弦的中點(diǎn)軌跡總是落在某個橢圓上?若存在,求出所有可能的值;若不存在,說明理由.
數(shù)學(xué)答案
一、選擇題
1、B(A) 2、C 3、A(C) 4、D 5、D 6、C(D)
7、B 8、B 9、C 10、B 11、B 12、A(C)
二、填空題
13、6 14、 15、31 16、
三、解答題
17、解:⑴由
由
∴函數(shù)的最小正周期T= …………………6分
⑵由
∴f(x)的單調(diào)遞減區(qū)間是.
⑶,∴奇函數(shù)的圖象左移 即得到的圖象,
故函數(shù)的圖象右移后對應(yīng)的函數(shù)成為奇函數(shù).…………………12分
18、(文)解:(1),又. ∴,.
(2)至少需要3秒鐘可同時到達(dá)點(diǎn).
到達(dá)點(diǎn)的概率. 到達(dá)點(diǎn)的概率.
故所求的概率.
(理)解:(Ⅰ)的概率分布為
1.2
1.18
1.17
.
由題設(shè)得,即的概率分布為
0
1
2
故的概率分布為
1.3
1.25
0.2
所以的數(shù)學(xué)期望.
(Ⅱ)由
∵,∴.
19、解:(1)取中點(diǎn),連結(jié),∵是的中點(diǎn),是的中點(diǎn).
∴ 所以,所以………………………… 2分
又平面,所以平面………………………………………… 4分
(2)分別在兩底面內(nèi)作于,于,連結(jié),易得,以為原點(diǎn),為軸,為軸,為軸建立直角坐標(biāo)系,
設(shè),則……………………………………………………… 5分
.
易求平面的法向量為…………………………………………… 7分
設(shè)平面的法向量為
,由…………… 9分
取得 ∴…………… 11分
由題知 ∴
所以在上存在點(diǎn),當(dāng)時是直二面角.…………… 12分
20、解:(1)由,得,兩式相減,得,∴,∵是常數(shù),且,,故
為不為0的常數(shù),∴是等比數(shù)列.
(2)由,且時,,得
,∴是以1為首項(xiàng),為公差的等差數(shù)列,
∴,故.
(3)由已知,∴
相減得:,∴,
,遞增,∴,對均成立,∴∴,又,∴最大值為7.
21、(文)解:(Ⅰ)因?yàn)?sub>
又
因此
解方程組得
(Ⅱ)因?yàn)?nbsp;
所以
令
因?yàn)?nbsp;
所以 在(-2,0)和(1,+)上是單調(diào)遞增的;
在(-,-2)和(0,1)上是單調(diào)遞減的.
(Ⅲ)由(Ⅰ)可知
(理)(1)證:令,令時
時,. ∴
∴ 即.
(2)∵是R上的奇函數(shù) ∴ ∴
∴ ∴ 故.
故討論方程在的根的個數(shù).
即在的根的個數(shù).
令.注意,方程根的個數(shù)即交點(diǎn)個數(shù).
對, ,
令, 得,
當(dāng)時,; 當(dāng)時,. ∴,
當(dāng)時,; 當(dāng)時,, 但此時
,此時以軸為漸近線。
①當(dāng)即時,方程無根;
②當(dāng)即時,方程只有一個根.
③當(dāng)即時,方程有兩個根.
(3)由(1)知, 令,
∴,于是,
∴
.
22、(文)22.解:(1)在中,.
. (小于的常數(shù))
故動點(diǎn)的軌跡是以,為焦點(diǎn),實(shí)軸長的雙曲線.方程為.
(2)方法一:在中,設(shè),,,.
假設(shè)為等腰直角三角形,則
由②與③得:,
則
由⑤得:,
,
故存在滿足題設(shè)條件.
方法二:(1)設(shè)為等腰直角三角形,依題設(shè)可得:
所以,.
則.①
由,可設(shè),
則,.
則.②
由①②得.③
根據(jù)雙曲線定義可得,.
平方得:.④
由③④消去可解得,
故存在滿足題設(shè)條件.
(理)解:(1) ,
,
于是,所求“果圓”方程為
,.
(2)由題意,得 ,即.
,,得.
又. .
(3)設(shè)“果圓”的方程為,.
記平行弦的斜率為.
當(dāng)時,直線與半橢圓的交點(diǎn)是
,與半橢圓的交點(diǎn)是.
的中點(diǎn)滿足 得 .
, .
綜上所述,當(dāng)時,“果圓”平行弦的中點(diǎn)軌跡總是落在某個橢圓上.
當(dāng)時,以為斜率過的直線與半橢圓的交點(diǎn)是.
由此,在直線右側(cè),以為斜率的平行弦的中點(diǎn)軌跡在直線上,即不在某一橢圓上. 當(dāng)時,可類似討論得到平行弦中點(diǎn)軌跡不都在某一橢圓上.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com