【題目】如圖,P是等腰直角△ABC外一點,把BP繞點B順時針旋轉90°到BP′,使點P′在△ABC內,已知∠AP′B=135°,若連接P′C,P′A:P′C=1:4,則P′A:P′B=( 。
A.1:4B.1:5C.2:D.1:
【答案】C
【解析】
連接AP,根據同角的余角相等可得∠ABP=∠CBP′,然后利用“邊角邊”證明△ABP和△CBP′全等,根據全等三角形對應邊相等可得AP=CP′,連接PP′,根據旋轉的性質可得△PBP′是等腰直角三角形,然后求出∠AP′P是直角,再利用勾股定理用AP′表示出PP′,又等腰直角三角形的斜邊等于直角邊的倍,代入整理即可得解.
解:如圖,連接AP,
∵BP繞點B順時針旋轉90°到BP′,
∴BP=BP′,∠ABP+∠ABP′=90°,
又∵△ABC是等腰直角三角形,
∴AB=BC,∠CBP′+∠ABP′=90°,
∴∠ABP=∠CBP′,
在△ABP和△CBP′中,
∵,
∴△ABP≌△CBP′(SAS),
∴AP=P′C,
∵P′A:P′C=1:4,
∴AP=4P′A,
連接PP′,則△PBP′是等腰直角三角形,
∴∠BP′P=45°,PP′=PB,
∵∠AP′B=135°,
∴∠AP′P=135°﹣45°=90°,
∴△APP′是直角三角形,
設P′A=x,則AP=4x,
∴PP'=,
∴P'B=PB=,
∴P′A:P′B=2:,
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關于原點對稱的△A2B2C2;
(3)在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內的一個動點,且點P的橫坐標為t.
(1)求拋物線的表達式;
(2)設拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.
(3)如圖2,連接BC,PB,PC,設△PBC的面積為S.
①求S關于t的函數表達式;
②求P點到直線BC的距離的最大值,并求出此時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F,若BE=3,AF=5,則AC的長為( )
A. B. C. 10D. 8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】.已知:在矩形中,是對角線,于點,于點;
(1)如圖1,求證:;
(2)如圖2,當時,連接.,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于矩形面積的.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=x2﹣2ax+m.
(1)當a=2,m=﹣5時,求拋物線的最值;
(2)當a=2時,若該拋物線與坐標軸有兩個交點,把它沿y軸向上平移k個單位長度后,得到新的拋物線與x軸沒有交點,請判斷k的取值情況,并說明理由;
(3)當m=0時,平行于y軸的直線l分別與直線y=x﹣(a﹣1)和該拋物線交于P,Q兩點.若平移直線l,可以使點P,Q都在x軸的下方,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】天門山索道是世界最長的高山客運索道,位于張家界天門山景區(qū).在一次檢修維護中,檢修人員從索道A處開始,沿A﹣B﹣C路線對索道進行檢修維護.如圖:已知米,米,AB與水平線的夾角是,BC與水平線的夾角是.求:本次檢修中,檢修人員上升的垂直高度是多少米?(結果精確到1米,參考數據:)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某公司用800萬元購得某種產品的生產技術后,進一步投入資金1550萬元購買生產設備,進行該產品的生產加工,已知生產這種產品每件還需成本費40元.經過市場調研發(fā)現:該產品的銷售單價需要定在200元到300元之間較為合理.銷售單價(元)與年銷售量(萬件)之間的變化可近似的看作是如下表所反應的一次函數:
銷售單價(元) | 200 | 230 | 250 |
年銷售量(萬件) | 14 | 11 | 9 |
(1)請求出與之間的函數關系式,并直接寫出自變量的取值范圍;
(2)請說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最少虧損是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:連接拋物線上兩點的線段叫拋物線的弦,在這兩點之間拋物線上的任意一點P與此兩點構成的三角形稱作拋物線的弦三角,點P稱作弦錐,設點P的橫坐標為x.
已知拋物線經過A(1,2)、B(m,n)、C(3,﹣2)三點,P是拋物線上AC之間的一點,以AC為弦的弦三角為△PAC.
(1)圖一,當m=2,n=1時,求該拋物線的解析式,若x=k1時△PAC的面積最大,求k1的值.
(2)圖二,當m=2,n≠1時,用n表示該拋物線的解析式,若x=k2時△PAC的面積最大,求k2的值.k1與k2有何數量關系?
(3)圖三,當m≠2,n≠1時,用m,n表示該拋物線的解析式,若x=k3時△PAC的面積最大,求k3的值.觀察圖1,2,3,過定點A、C,根據B在各種不同位置所得計算結果,你發(fā)現通過兩個定點的拋物線系中,以此兩點為弦的弦三角的面積取得最大值時,弦錐的橫坐標有何規(guī)律?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com