【題目】如圖,已知是⊙的直徑,,和是圓的兩條切線(xiàn),,為切點(diǎn),過(guò)圓上一點(diǎn)作⊙的切線(xiàn),分別交,于點(diǎn),,連接,.若,則等于( )
A. 0.5 B. 1
C. D.
【答案】C
【解析】
連接OM、OC,根據(jù)圓周角定理可得∠AOC=2∠ABC=60°,由切線(xiàn)長(zhǎng)定理可得MA=MC且∠MAO=∠MCO=90°,利用HL證明Rt△AOM≌Rt△COM,即可得∠AOM=∠COM=∠AOC=30°,在Rt△AOM中求得AM的長(zhǎng)即可.
連接OM,OC,
∵∠ABC=30°,
∴∠AOC=2∠ABC=60°,
∵M(jìn)A,MC分別為⊙O的切線(xiàn),
∴MA=MC,且∠MAO=∠MCO=90°,
在Rt△AOM和Rt△COM中,
MA=MC,OM=OM,
∴Rt△AOM≌Rt△COM(HL),
∴∠AOM=∠COM=∠AOC=30°,
在Rt△AOM中,OA=AB=1,∠AOM=30°,
∴tan30°=,即 ,
解得:AM=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,是的中點(diǎn),是線(xiàn)段延長(zhǎng)線(xiàn)上一點(diǎn),過(guò)點(diǎn)作,與線(xiàn)段的延長(zhǎng)線(xiàn)交于點(diǎn),連結(jié)、.
求證:;
若,試判斷四邊形是什么樣的四邊形,并證明你的結(jié)論;
若為的中點(diǎn),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將圖1中的矩形ABCD沿對(duì)角線(xiàn)AC剪開(kāi),再把△ABC沿著AD方向平移,得到圖2中的△A′BC′.
(1)在圖2中,除△ADC與△C′BA′全等外,請(qǐng)寫(xiě)出其他2組全等三角形;① ;② ;
(2)請(qǐng)選擇(1)中的一組全等三角形加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交兩點(diǎn)A(﹣1,0),B(3,0),過(guò)點(diǎn)A作直線(xiàn)AC與拋物線(xiàn)交于C點(diǎn),它的坐標(biāo)為(2,﹣3).
(1)求拋物線(xiàn)及直線(xiàn)AC的解析式;
(2)P是線(xiàn)段AC上的一個(gè)動(dòng)點(diǎn),(不與A,C重合),過(guò)P點(diǎn)作y軸的平行線(xiàn)交拋物線(xiàn)于E點(diǎn),點(diǎn)E與點(diǎn)A、C圍成三角形,求出△ACE面積的最大值;
(3)點(diǎn)G為拋物線(xiàn)上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,直接寫(xiě)出所有滿(mǎn)足條件的F點(diǎn)坐標(biāo);如果不存在,如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,F是CD上一點(diǎn),E是BF上一點(diǎn),連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,則下列結(jié)論中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點(diǎn)C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長(zhǎng);
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)邊長(zhǎng)不定的正方形ABCD,它的兩個(gè)相對(duì)的頂點(diǎn)A,C分別在邊長(zhǎng)為1的正六邊形一組平行的對(duì)邊上,另外兩個(gè)頂點(diǎn)B,D在正六邊形內(nèi)部(包括邊界),則正方形邊長(zhǎng)a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象與軸交于點(diǎn)、,且,與軸的正半軸的交點(diǎn)在的下方.下列結(jié)論:①;②;③;④.其中正確結(jié)論的個(gè)數(shù)是( )個(gè).
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com