【題目】如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.

(1)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);

(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;

(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長(zhǎng)最。咳绻嬖,求出周長(zhǎng)的最小值;如果不存在,請(qǐng)說(shuō)明理由.

【答案】(1)E(3,1),F(1,2);(2);(3)存在,最小四邊形MNFE的周長(zhǎng)最小值是5+

【解析】分析:(1)BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處,可以知道四邊形ADFB是正方形,因而BF=AB=OC=2,則CF=3-2=1,因而E、F的坐標(biāo)就可以求出.(2)頂點(diǎn)為F的坐標(biāo)根據(jù)第一問(wèn)可以求得是(1,2),因而拋物線的解析式可以設(shè)為y=a(x-1)2+2,以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,應(yīng)分EF是腰和底邊兩種情況進(jìn)行討論.

當(dāng)EF是腰,EF=PF時(shí),已知E、F點(diǎn)的坐標(biāo)可以求出EF的長(zhǎng),設(shè)P點(diǎn)的坐標(biāo)是(0,n),根據(jù)勾股定理就可以求出n的值.得到P的坐標(biāo).當(dāng)EF是腰,EF=EP時(shí),可以判斷Ey軸的最短距離與EF的大小關(guān)系,只有當(dāng)EF大于Ey軸的距離,P才存在.

當(dāng)EF是底邊時(shí),EP=FP,根據(jù)勾股定理就可以得到關(guān)于n的方程,就可以解得n的值.

(3)作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′,作點(diǎn)F關(guān)于y軸的對(duì)稱點(diǎn)F′,連接E′F′,分別與x軸、y軸交于點(diǎn)M,N,則點(diǎn)M,N就是所求點(diǎn).求出線段E′F′的長(zhǎng)度,就是四邊形MNFE的周長(zhǎng)的最小值.

本題解析:(1)E(3,1);F(1,2).

(2)RtEBF,B=90EF=

設(shè)點(diǎn)P的坐標(biāo)為(0,n),其中n>0,∵頂點(diǎn)F(1,2),

∴設(shè)拋物線解析式為y=a(x1) +2(a≠0).

①如圖1,

當(dāng)EF=PF時(shí), ,

.

解得 (舍去); .

P(0,4).

4=a(01) +2.

解得a=2.

∴拋物線的解析式為y=2(x1) +2

②如圖2,

當(dāng)EP=FP時(shí),EP=FP,(2n) +1=(1n) +9.解得n= (舍去)

③當(dāng)EF=EP時(shí),EP=<3,這種情況不存在。

綜上所述,符合條件的拋物線解析式是y=2(x1) +2.

(3)存在點(diǎn)M,N,使得四邊形MNFE的周長(zhǎng)最小。

如圖3,作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′,作點(diǎn)F關(guān)于y軸的對(duì)稱點(diǎn)F′,

連接EF,分別與x軸、y軸交于點(diǎn)MN,則點(diǎn)MN就是所求點(diǎn)。

E′(3,1),F′(1,2),NF=NF′,ME=ME′.BF′=4,BE′=3.

FN+NM+ME=FN+NM+ME′=EF′=.

又∵EF=,

FN+MN+ME+EF=5+,此時(shí)四邊形MNFE的周長(zhǎng)最小值是5+.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賓館擁有客房100間,經(jīng)營(yíng)中發(fā)現(xiàn):每天入住的客房數(shù)y()與房?jī)r(jià)x()(180≤x≤300)滿足一次函數(shù)關(guān)系,部分對(duì)應(yīng)值如下表:

x()

180

260

280

300

y()

100

60

50

40

(1)yx之間的函數(shù)表達(dá)式;

(2)已知每間入住的客房,賓館每日需支出各種費(fèi)用100元;每間空置的客房,賓館每日需支出各種費(fèi)用60元.當(dāng)房?jī)r(jià)為多少元時(shí),賓館當(dāng)日利潤(rùn)最大?求出最大利潤(rùn).(賓館當(dāng)日利潤(rùn)=當(dāng)日房費(fèi)收入-當(dāng)日支出)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,

1如果,那么根據(jù)___________,可得=__________

2如果,求的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字, , 的小球,它們的形狀、大小、質(zhì)地等完全相同.小強(qiáng)先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.

1)用列表法或畫(huà)樹(shù)狀圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;

2)求小強(qiáng)、小華各取一次小球所確定的點(diǎn)(x,y)落在一次函數(shù)的圖象上的概率;

3)求小強(qiáng)、小華各取一次小球所確定的數(shù)x、y滿足的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為測(cè)量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測(cè)得坡長(zhǎng)AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.

(1)求AB段山坡的高度EF;

(2)求山峰的高度CF.(1.414,CF結(jié)果精確到米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在第一象限內(nèi),其坐標(biāo)為(2,1),以O(shè)A為邊在x軸上方作正方形OABC,則正方形OABC的頂點(diǎn)C的坐標(biāo)是(
A.(﹣2,1)
B.(1,3)
C.(1,2)
D.(﹣1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由于強(qiáng)降雨,某地區(qū)出現(xiàn)嚴(yán)重洪澇災(zāi)害,某愛(ài)心組織緊急籌集了部分資金,計(jì)劃購(gòu)買(mǎi)甲、乙兩種救災(zāi)物品送往該地區(qū),已知每件甲種物品的價(jià)格必每件乙種物品的價(jià)格高10元,用350元購(gòu)買(mǎi)甲種物品的件數(shù)與用300元購(gòu)買(mǎi)乙種物品的件數(shù)相同,求甲、乙兩種救災(zāi)物品每件的價(jià)格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用代入法解下列方程組:

(1)

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)x=2時(shí),代數(shù)式px3+qx+1的值等于2016,那么當(dāng)x=﹣2時(shí),求px3+qx+1 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案